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Chapter I INTRODUCTION Process Planning

I. INTRODUCTION
1. PURPOSE OF THIS DOCUMENT

The purpose of this document is to provide a general description
of design and implementation of the Automated Manufacturing
Research Facility (AMRF) Process Planning System. The document
should provide the reader with an understanding of the concepts
behind the work in the process planning project as well as on the
approach adopted. Details on system implementation are provided.

2. AUDIENCE

The intended audience for this work is the technical community
already familiar with current process planning issues and
practices, both research and commercial. While this document does
contain a brief review of other planning systems, it is not
intended as a tutorial on process planning. Rather, it discusses a
new approach to process planning in an automated facility.

3. CONTENTS FLOW

3.1. casual User
The casual user does not need to read this document if time does
not permit. The User's Manual [1] is the primary document needed
to simply operate the planning system.

3.2. Research User
A user who intends to use the planning system as part of a related
research effort should at least read the sections on architecture,
the functions of major components, and the User's Manual.

3.3. System Implementor

A system implementor should be familiar with this document and
with the User's Manual. It should provide enough insight to enable
the installation and operation of the planning system on a local
machine.






Chapter II OVERVIEW Process Planning

II. OVERVIEW
1. WHAT IS PROCESS PLANNING?

Process planning is the translation of part designs into a
representation of activities that will transform raw materials
into finished products. In traditional manufacturing environments
a part drawing is given to a process engineer, who first
determines coarse requirements. These requirements will include.
the tightest tolerance that needs to be produced, rough estimation
of the work volume, fixturing constraints, etc. With this
information the process engineer can then make determinations of
part routings: that is, which machine tools are capable of
producing the part, how the part will be fixtured, what tooling
will be required, and finally the determination of manufacturing
features. This information can then be given to a machinist or
N/C programmer who will do the detailed equipment level
programming.

In a fully automated facility such as the AMRF all of the
manufacturing steps will have to result in the development of
process plans (these can be thought of as a program) for all
relevant control systens.

1.1. The Interpretation of Design

Recognizing form features on a part and mapping those features to
appropriate manufacturing processes is a fundamental step in
process planning. Human process planners have been performing
this mapping for quite some time. Currently, there are many
research efforts underway to automate this process. There is also
great interest in extending it to provide feedback from
manufacturing to design.

On current CAD systems, the designer translates the functionality
of a part, or group of parts, into geometry and tolerance
notations on part drawings. A poorly conceived part geometry can
overly constrain the manufacturing process. A better approach
would be to force the designer to describe a product in terms of
features that completely represent part functionality. These
design features can then be mapped into manufacturing or process-
oriented features. These manufacturing and design features will
then be used to generate the geometry as it is realized by
creating the manufacturing features. The goal is to give the
geometry generation process the flexibility to change geometry to
optimize the manufacturing operations without significantly
changing the original functionality. This approach permits the

3



Chapter II OVERVIEW " Process Planning

optimization of the manufacturing operations in order to make best
use of processing equipment, select the lowest cost or simplest
operation to produce the geometry, and modify geometry to ease the
manufacturing or assembly tasks.

A set of tools is being developed to define a part in terms of its
geometrical and topological entities, and functional entities
known as features. These functional features are collections of
geometrical and tolerance attributes on commonly reoccurring
design or manufacturing patterns. Common manufacturing features
include pockets, holes, and slots. This representation scheme
allows computer programs to reason about, query, and interpret
information between one another, without human intervention. A
neutral part model file format has been established within the
AMRF to convey geometry, topology and feature data between
application systems [2].

1.2. Facility Capability Models

One very important aspect of the process planning problem is the
understanding of the capabilities of the manufacturing
environment. Trying to produce a part on the wrong piece of
equipment leads to lost time, wasted raw materials, and in
general, wasted or redundant efforts. Having the wrong mix of
process equipment for the types of part families can lead to low
utilization. In conventional shops this processing model is held
by a number of individuals, who probably have a model of only a
portion of the entire manufacturing operations. This leads to
under/over-utilization of certain pieces of equipment. In future
automated environments we expect much of this will be done away
with.

In the process planning system we have started to develop a set of
tools that provide models of the shop floor capabilities. These
capabilities include the activities (work elements) that all
control systems can perform, the required hardware and software
needed to perform those activities, performance models of the
machine tools and robots, and information about inventories such
as raw materials and tooling.

2. BACKGROUND SURVEY OF PROCESS PLANNING

Process planning systems can play a major role in manufacturing
automation. Numerous industries have developed and used process
planning within their organizations for quite some time. In most
cases this has been to provide the production planner, production
scheduler, and machine operator with the information they need to
do their job. This leads to lower costs, better parts, and a
reduced manufacturing cycle. Process planning systems have been
used to help develop more consistent parts by following standard

4



Chapter II OVERVIEW Process Planning

operations, and part routings. Coupled with group technology,
—standard plans can be created for part families, then modified to
represent the unique characteristics of the individual parts. All
of these reasons contribute to more consistent parts, lower costs,
and shorter turn around times. Process planning is the link
between the part drawing and the activities to be performed within
a factory. It is important to identify previous work to show how
our work fits with other process planning systems.

2.1. Approaches to Process Planning

This section describes several approaches to computer aided
process planning. Primarily they can be divided into two separate
classes: those requiring human intelligence to make decisions
and those that do not. Variant systems and their derivatives
require human input and decision making. Generative systems start
with some form of part description and can automatically generate
a process plan. All commercial systems today are variant systems
or derivatives, some generative systems do exist and are being
used within companies and universities for restrictive part
families. Much research needs to be done before fully generative
systems will be developed. For a more detailed discussion of the
state of the art of computer-aided process planning systems, see
Chang and Wysk [3].

2.1.1. Variant Approaches

Variant planning systems are based on a library of standard plans
for different part families that a process engineer retrieves and
edits, creating "variants" of basic plans. Variant systems
typically rely on group technology classification and database
management systems for their implementation. Standard process
plans are developed for each family of parts produced and are
stored in the database. When a new part enters the system, it is
first classified by part family. The part classification code is
used as a key to select a copy of the appropriate default plan
from the database. This copy is then modified to reflect the
specific processing required due to the unique characteristics of
the new part. If a plan does not exist for the part's family, then
a new default plan is created by an experienced process engineer
and stored in the database system.

The technology that is required to implement this type of process
planning system is readily available on main frame as well as
personal computer systems. Indeed, almost all of today's
commercial process planning systems employ variant techniques.
With this approach most knowledge resides in the mind of the
process engineer, the computer serves mainly as an organizing

5



Chapter II OVERVIEW Process Planning

tool. Although intelligent generative systems are often more
desirable because of much less human involvement, there are
significant benefits that can be obtained from the variant
approach. The development of a variant system forces an
organization to study and classify the activities that it can
perform in order to understand the part families it can produce in
its shop. This exercise, in turn, reveals the kinds of equipment
and labor skills that the shop really has and needs. But, there
are some limitations in the variant approach. It can often be
impractical if the shop produces small batches of widely varying
parts. More time has to be spent defining new part families and
modifying default plans. Furthermore, it does not capture the real
knowledge or expertise of process engineers. The generative
approach to process planning does address these issues. The
capture of this information can be of critical importance to
industry which is facing large numbers of process engineers
retiring, and new engineers not being trained to fill those
positions. Secondly, the hope with generative systems is to
develop much more consistent process plans, this is important in
the competitive marketplace of today's industry.

2.1.2. Generative Approaches

The main thrust in process planning research today is in the area
of generative systems, for some examples see [2,3]. In these
systems, techniques from the field of artificial intelligence are
used to automatically create a plan for a new part. An expert
problem solving system uses an internal process knowledge base and
part specific data to generate new plans. This approach requires
that a full product definition or part model exists in a form that
is accessible by the expert system software. This model should
include geometry and topology, a tolerance model, and information
about the functionality of a part. The knowledge base contains
information gathered from process engineers on the how and why of
making process decisions for various types of parts. Decisions are
often keyed to the different types of features that are typically
produced on parts. With this approach, the knowledge base becomes
a repository of knowledge gained from the many years of experience
of many process engineers. It also permits the separation of the
process knowledge from the part data, which facilitates data
driven automation. This is important because it separates the
tolerance or functionality of the part in question from the
techniques that will be used to produce it. This will allow new
or different processing techniques to be substituted without major
changes to the part representation.

To date, fully generative process planning has proved to be an
elusive goal, but there are some signs of progress. The biggest
problems have included the representation of features (pockets,

6



Chapter II OVERVIEW Process Planning

slots, holes), processes (drill hole versus bore hole), and
‘precedence information (make pocket before hole). Furthermore, the
outputs produced by process planning systems are non-standard.
That is, the organization of data into forms or structures such as
routing and operations sheets differs from system to system. As a
general rule, plans are meant to be interpreted by human readers,
rather than by a computer system. In the future, it will be
essential that process planning interact more closely with
automated control systems. Major questions with respect to the
inputs and outputs of process planning systems must be resolved
before fully computer-integrated intelligent manufacturing systems
become a reality.

2.1.3. AMRF Approach

The AMRF process planning project is tackling questions regarding
the fundamental role of process planning in automated
manufacturing facilities where all operations are under some form
of direct computer control. Our research focuses on the
identification of basic concepts and principles that support the
integration of process planning with manufacturing process control
systems, scheduling, inspection, and all facets of the
manufacturing life-cycle. Important steps leading to
plug-compatibility between these systems include:

*the establishment of a system architecture for
- factories and their planning systems which accounts for
both current and future expected capabilities,

*the definition and modeling of manufacturing activities
or processes,

*the specification of a data representation scheme that
can be used to organize and exchange information among
planning, control, and other factory systems,

*the development of generic product descriptions in
terms of both design and manufacturing feature
geometries, and

*the verification of these potential interface

specifications and protocols under realistic test
conditions.

3. PROCESS PLANNING IN THE AMRF

Process planning in the AMRF currently exists in the reactive
level of planning and control. Control systems are driven by

7



Chapter II OVERVIEW Process Planning

predetermined state tables. The planning system requires
significant human input and is not based on state space and
heuristic search. Models of work elements and requirements exist
for major control systems. These are used when defining the
process plans for those control systems. The sequences for the
process plans are determined by the user and input into the
process plan editor (described in chapter V). This set of editors
is used to create, edit, and browse through process plans. These
plans are communicated to the AMRF through the Integrated
Manufacturing Data Adminstration System (IMDAS) [6]. These
process plans are interpreted by control systems to sequence
through their assigned activities. There exists no direct
feedback to the process planning system about the performance of
the process plans or for checking on the condition of the shop
floor. Process planning data structures have been developed for
all the current levels of the AMRF hierarchy. The representation
of these plans is done with the process plan file format (see

- Appendices B and C). This format is used by all control systems
that retrieve and execute process plans. Within the process
planning project some work has been done on generative planning.
Starting with a set of features defined in the part model, SIPS
(Semi-Intelligent Process Selection) determines the process or set
of processes required to produce the feature (see Appendix A).

The system reasons about the tolerance constraints on the features
using a set of process models about the capabilities of various
machining operations. For more information about the AMRF process
planning system see the papers in Appendix A.

4. THE INPUTS AND OUTPUTS OF PROCESS PLANNING

4.1. Part Model

The input to the process planning system is the AMRF part model
for the part to be produced. This model contains the geometry,
tolerances, and user definable "features". These features are
items of particular technological significance (reoccurring
patterns). These features are used by control systems to
represent important information about the part, such as edge loops
of a deburring operation, or machine features like pockets for the
Vertical Workstation. The part model format can also be used to
define intermediate part geometries. The process planning system
will use the part model format to specify intermediate part
geometries.

4.2. Process_Plans

Process plans are the output of the planning system. These are
the steps necessary to transform the part geometry into an actual

8



Chapter II OVERVIEW Process Planning

part. The process plans are stored in the AMRF process plan
format. This storage is on the local Lisp machine file system or
on the AMRF database system on the VAX.

4.3. Inventory and Status

Currently, inventory and status information resides only on the
local planning system. An interface to the IMDAS has been
developed, currently we do not get inventory and status
information through IMDAS.






Chapter III ARCHITECTURE Process Planning

ITI.  ARCHITECTURE

1. PROCESS PLAN DEFINITION FOR MANUFACTURING SYSTEMS

1.1. Representation Issues

Before a process planning system can be implemented in a general
way, the fundamental issues of how to represent a process plan
must be addressed. By adopting a general and flexible
representation scheme, the planning system can evolve while still
using the same data structures. This problem can be broken down
into two categories, internal representation, and external
representation.

1.1.1. Internal

The first problem to tackle is the representation of an individual
activity or process step for an entity within a factory. In the
AMRF, these process steps are described in terms of "work
elements". Work elements can be thought of as operators within a
state space. Whenever a work element is invoked, a state
transition takes place. A process plan corresponds to a sequence
of operators applied to an initial state, resulting in a goal
state. The challenge is to represent the manufacturing task in the
framework of artificial intelligence concepts such as the ones
described here, so that the problems can be handled using current
and future AI techniques.

The concept of frames was used to represent work elements. While
the current implementation is not a frame-based system yet, the
design is such that it will naturally fit into a frame
implementation when one becomes available. Basically, each work
element consists of a name and a set of attribute-value pairs,
like a frame with slots. The name identifies the work element,
while the attributes and values serve to completely specify the
details of a particular work element instance. Such specifications
could include necessary serial numbers of parts and trays,
coordinate information for feature creation, target workstations
for a particular task, etc.

With a robust representation for individual activities in place,
the next problem was to develop a representation for an entire
process plan. As will be discussed more fully in the
implementation section of this document, the core part of a plan
consists of a precedence graph of connected work elements, where
the precedence relationships imply sequencing in time. This
precedence graph is actually part of a larger structure (the
process plan itself), which contains pointers to the various parts

11



Chapter III  ARCHITECTURE Process Planning

of the plan. These are: a header section, which contains various
~bookkeeping information; a parameters section which identifies
variables used within the plan which cannot be bound before
execution time; the procedure specification, discussed above; and
the requirements section, which lists all the hardware and
software necessary for the execution of the plan. Internally, the
entire structure is represented as a network of connected objects
(see Chapter VI) which can send and receive messages.

1.1.2. External

In keeping with the need for simplicity and universality, the
external representation of a process plan and of work elements
does not take advantage of any advanced programming concepts, such
as object-oriented programming. This representation is used for
storage and communication of process plans throughout the factory.
As shown in the example of Appendix D, it is in human readable,
ASCII text form, called the neutral data exchange format [7]. The
structure of the exchange format process plan is outlined in
Appendix C, showing the four major sections identified above.

1.2. Formal Language Definition
l1.2.1. Neutral ASCII Format for Process Plans

A brief overview of Backus-Naur form can be found in Appendix B.
This notation is useful for the unambiguous specification of a
formal syntax, such as the process plan neutral format. The
process plan format specification can be found in Appendix C. This
format is used by all controllers on the AMRF shop floor for the
interpretation of process plans. Parsers have been implemented in
a number of computer languages, including C and Lisp.

2. DATA ENTRY

When generating process plans to support the AMRF, several
different types of information are necessary. First, there must be
a context within which the plan has meaning. This means that the
configuration of the factory must be known, including what
equipment exists and what its capabilities are. Only then can the
plan be evaluated as to its feasibility or optimality. Second, the
operation sequence itself must be provided, (this is really the
core part of a process plan). This information currently is
provided by a human process engineer, with one exception at the
equipment level, where an expert system, (SIPS), can provide
process sequencing suggestions. The third piece of information is
the list of requirements needed to perform the steps specified.
Most of this is automatically provided by the planning system,

- which scans the procedure specification section. Finally, higher
level information such as the part material, process engineer,

12



Chapter III  ARCHITECTURE Process Planning

Group Technology (GT) code and so forth must be specified. One
‘important piece -of data which falls into this category is the name
of the part model which may be referenced in the process plan. The
“part model contains all the topological, geometric, and tolerance
information needed to fully describe the part. Work elements can
refer to features defined in the part model to specify coordinate
and tolerance information. Details on how data is actually entered
into the system can be found in the User's Guide.

2.1. Factory configquration

The representation of the factory configuration is accomplished by
maintaining a tree of all the entities capable of handling process
plans. Each entity has an associated collection of work elements
which it can understand. Each time a process plan is read, edited
or created, the configuration model is consulted to determine the
validity of the work element or requirement being added. The
configuration model can be altered at any time, and alternative
models can be loaded, which could represent different facilities.
Changes to the configuration model should only be made by the
manager of the planning system, since a single change in the model
can make large numbers of existing process plans unreadable.
Changes which the manager can make include the addition or
deletion of entities on the shop floor (cell, workstation or
equipment), and addition of, deletion of, or changes to existing
work element definitions. Thus, the configuration model maintains
the "language" in which all process plans are expressed.

2.2. Operation Sequence

The task of generating a process plan consists mainly of
constructing a precedence graph of the work elements to be invoked
upon execution. The work elements maintain pointers to "parents”
and children within the graph. Editing the sequence of operations
is carried out by adding, deleting, or modifying work elements in
the graph. The modularity of the work elements making up the
operation sequence lends great flexibility to a process plan. The
precedence graph, which is actually the internal representation of
the procedure specification, is one slot in the data structure
known internally as the plan. Other slots include the requirements
and the header.

2.3. Requirements

The requirements section of the process plan structure is actually
represented in a similar manner as the procedure specification.
This is most clearly seen by the inheritance structure discussed
in the implementation section of this document. Again, the
requirement entities are represented as nodes in a graph. This
time, the relationship between nodes does not imply any ordering.

13



Chapter III ARCHITECTURE Process Planning

There is the capability, however, to establish an explicit

+ relationship for identifying sets. of requirements. This capability
might be needed, for example, to describe a kit of tools. Any
individual tool may be referenced, or the entire kit may be named.
The individual tools can be defined as components of the kit.

Requirements for a process plan can be either pieces of hardware
or software needed for the execution of the plan. The software
includes other process plans referenced in a given plan as well as
N/C programs. Hardware includes the necessary workstations, tools,
trays, parts, etc. These are all represented within structures
analogous to work elements for the procedure specification.

2.4. Header

The header is the third major part of a process plan. It contains
generic information pertaining to the plan. Entries include the
process engineer, the part material, the lot quantity, etc. A
particularly important entry is that of the part model which
accompanies the plan. The part model is used to fully describe the
part topology, geometry, tolerances, and functionality. Work
elements within a process plan may refer to features appearing in
the part model as a pointer to more detailed information on
dimensions and tolerances.

2.5. Parameters

The parameters section is simply a collection of all attribute
values occurring in the procedure specification section beginning
with the "$$" prefix, which denotes a parameter. These are really
just "dummy" variables, which will be replaced with actual values
at execution time. Examples include serial numbers for trays and
tools. The parameters section is useful at execution time to
identify what information must be bound before execution can
begin.

3. PROCESS PLAN MANAGEMENT
There are two locations where process plans can be stored:
locally, and in the AMRF distributed database system. The two
alternatives are provided to allow continued operation of the
planning system even if the AMRF network system should fail.

3.1. Local Database

The local storage of process plans is carried out by converting
the internal representation of a plan, (a structure referencing
the three sections described above), into the ASCII format
described in paragraph 1.2.1 of this section. This text is then
stored as a simple file on the local file system, with a name

14
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stored as a simple file on the local file system, with a name
specified by the process plan naming convention. Retrievals are
carried out by file name alone, rather than through database key
field queries.

3.2. Distributed Database System (IMDAS)

Process plans can also be stored and retrieved via the Integrated
Manufacturing Data Administration System (IMDAS). Here, the plans
are again converted to the neutral ASCII format before storage,
but key fields are also assigned to the plan. These fields include
the plan name, the executing system and the version number. The
storage is requested using a generic query language (DML) and
supplying the file name where the process plan is stored. The
IMDAS copies the file into an internal database, along with the
key fields. Plan retrieval is done by key fields. This can be
simply the specification of the plan name, but may include
combinations of the other fields as well. Once a plan has been
retrieved, the planning system converts the neutral format back
into the internal graph representation. At this point, there is no
difference between a plan retrieved locally and one retrieved from
the IMDAS.

3.3. Part Model Access

The AMRF part model is used in conjunction with a process plan,
both when creating and editing a plan, and when executing the
plan. In the planning system, the part model is parsed into an
internal representation of connected programming objects (see the
next section). This internal representation can be used as an aid
to the process engineer, or to the expert process selection module
(SIPS) in use at the equipment level of planning. It is the part
model that gives the feature characteristics to the SIPS module
when it is reasoning about the optimum process for the creation of
a feature. Currently, the part model is provided to the planning
system by simple file transfer from the Geometry Modelling System
(GMS). In the future, this will be handled through the IMDAS.

15
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Iv. DESIGN CONSTRAINTS

This section outlines a number of the original system design
constraints placed upon the design team.

1. CURRENT TECHNOLOGY

The original intent of the process planning system is to develop a
tool that could support the process planning requirements of the
AMRF, as well as to serve as a tool for testing advanced concepts
in process planning research. A number of general goals are
outlined, such as friendly, easy-to-use systems and advanced
concepts from computer science such as artificial intelligence.
This system is to incorporate the latest user interface
techniques, mouse pointing devices, pull down menus, integration
of text and graphics, and new representation techniques such as
frame systems and object oriented programming. Most of this led
to the choice of a specialized computer environment provided by a
Lisp machine. A Lisp machine provides an interpreted software
environment, which leads to improved programmer productivity. In
addition this environment provides the best tools for the
development of expert systems which will play a critical role in
the automation of process plan generation. One of the most
important benefits from this environment is the capability to do
rapid prototyping of system components.

1.1. Design Systems

The process planning project has the function of deciding what
shape the original stock should take, specifying what processing
should be done to the part leaving it in various intermediate
geometries. 1In addition the process engineers also specify the
fixtures for the part. All of these items call for the use of
some kind of design tool. Early in the AMRF project it was
decided that the resource did not exist to do research in the area
of computer aided design systems; consequently, the project has
never had a good design tool available. Most of the work was to
be done with commercially available CAD systems. As individual
systems (such as inspection, cleaning and deburring, and process
planning) matured they outgrew the capabilities of the CAD tool.
This led to the development of the AMRF part model format, which
contains many of the aspects required for advanced manufacturing
systenms.
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l.2. User Interface

The long term goal of the planning project is to provide tools
which can automatically develop a complete process plan from some
description of the part. This goal is many years away and many
issues need to be resolved. The original design called for a very
easy-to-use tool for developing process plans that required
minimal user typing and bookkeeping. In addition, there was a
desire to build a system which provides a means for integrating
expert planning modules as they were developed. The overall goal
was to make the process engineers as productive as possible, and
in complete control of plan development. Any portion of the plan
generated automatically would still be available to the process
engineer for review and modification. As confidence grew in the
expert modules, less review would be required, and efforts could
be spent on the further development of these expert planning
modules.

This has lead to the development of a friendly easy to use system
for the creation of process plans. As much error checking as
possible is done during plan development to prevent plans from
being distributed with wrong information.

1.3. AI Systems

While the original planning system was to be interactive, the
design called for the integration of expert planning systems as
soon as was possible. This called for the development of the
planning system in a computer language and environment that
allowed for the development of such AI systems. The Symbolicsl
Lisp machine environment provides a wide array of artificial
intelligence tools. These tools are available from both
universities and commercial organizations. They provide a wide
variety of techniques to model the reasoning mechanism used by
humans.

l1.4. Communications
The AMRF process planning system is integrated with the AMRF

network. The Lisp machine provides support for the Transmission
Control Protocol / Internet Protocol (TCP/IP) network protocol.

1 certain commercial equipment, instruments, or materials are
identified in this paper in order to adequately specify the
experimental procedure. Such identification does not imply
recommendation or endorsement by the National Bureau of Standards,
nor does it imply that the materials or equipment identified are
necessarily the best available for the purpose.
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Common memory which is used by most AMRF systems has not been
implemented on the Symbolics.  To date we have a protocol called
Nfile running between the Symbolics and the Sun computers. The
"Nfile process on the Sun communicates with the common memory. 1In
the future, if sufficient resource are available, we would like to
have some form of common memory running on the Lisp machine.

1.5. Database Management

The original system design called for integration of the planning
system with the AMRF database systems. This integration was
originally envisioned to cover the complete storage of process
plans and their associated elements in relational tables. This
would allow for a wide variety of searching capabilities. As the
system is currently implemented, process plans are only stored as
"files. A mechanism has been implemented to interface to IMDAS to
make it possible to store.and retrieve a wide variety of
information required by the process planning systemn.
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V. FUNCTIONS OF MAJOR COMPONENTS

This section outlines the functions of the major process planning
system components. It includes a description of the configuration
tools, editing tools, plan storage and retrieval tools, part
modeling, parsers, and the expert system tools.

1. CONFIGURATION TOOLS

The configuration tools of the planning system are meant to be
used by the planning system personnel alone or with workstation or
system implementors who are very familiar with the process
planning system. The tools allow the development of alternate
factory floor configurations, as well as other manufacturing
facilities. These tools are used to define work elements and
requirements to be used by equipment within these factories.

1.1. Shop Floor Definition

This is the first tool one would use in creating an entirely new
planning system for a facility. This tool allows the creation of
models of the factory floor systems and other control systems. It
only maintains a logical view of the relationships between
systems. Figure V-1 contains a screen-dump of the actual tool.
There are several major sections to this tool. The window for
this tool consists of four panes, the largest pane in the upper
left, contains the actual view of the factory hierarchy. In the
referenced figure, the cell, workstation and equipment levels of
the AMRF are shown. The second pane in the upper right quadrant
gives an overview of the entire hierarchy, showing where the
current viewport is located. This is often necessary because of
limited space available on the screen. The third pane, in the
lower right quadrant, contains an object description pane. The
fourth pane, lower left quadrant, is a text-interaction pane for
responding to questions from the planning system. This tool is
used to describe the logical relationships between equipment on
the shop floor. 1Its second major function is to keep track of the
available work element definitions for all of the cell,
workstation and equipment identified. These work element
definitions are used when a user creates a process plan for a
particular system. 1In the referenced figure we are showing the
AMRF configuration of the cell, the Inspection Workstation, the
Horizontal Workstation, the Cleaning and Deburring Workstation,
the Vertical Workstation, and all of the associated pieces of
equipment. The cell and workstations are abbreviated CELL, IWS,
HWS, CWS, and VWS respectively. Displayed in the object
description window is a description of the Vertical Workstation,
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which is called VWS. The menu in pane one is currently showing
the defined work elements that can be used in a process plan for
the milling machine of the vertical workstation. This tool can be
‘used to edit the definition of the work elements which will be
described in the next section.

1.2. Work Element Definition

Figure V-2 (a) shows a screen dump of the work element editing
tool. It consists of five panes. The first pane is the title pane
which tells the users which work element is currently being
edited. The second pane, to the left, immediately below the title
shows all of the work elements defined for the portion of that
hierarchy. The third pane, to the right, immediately below the
title is the work element template to be filled in by the user.
The fourth pane is the menu pane, below panes two and three. It
describes major functions for the window such as editing,viewing,
saving, etc. The fifth pane is a text-interaction pane for
displaying instructions to the user, and for the user to answer

- . questions. The figure shows the machine lot work element of the

cell being edited. All of the other cell level work elements are
displayed in pane number 2. The system allows a user to copy a
previously defined work element and make changes to it or to
create a new work element from scratch. The user £ills in a
template in the third pane where, currently, the major fields are
"Autogen *", "time", and "User Property". The autogen nodes are
used to automatically add items to a process plan. The "Autogen
Rgmts" slot allows a user to define what items from this work
element need to be added to the requirements list section of a
process plan. The other autogen slots are currently not used but
are kept for backward compatibility with a pre-release version of
the software. The time field allows the user to specify a default
time for the action to take. This field is in all work elements,
it can be changed when editing a process plan. The "User
Property" is where the attributes and their data-types are defined
for the work element. The attributes can be any set of characters
up to 16 in length. The data types are chosen from the menu
displayed in Figure V-2 (b). 1In this figure, the current work
element, machine-lot, shown has the attributes system, type,
plan_id, lot_id, and lot_size. Their associated data types are
symbol, symbol, symbol, symbol, and a number, respectively. When
the user has finished editing a work element, it is saved in the
current factory database and available for use in new and existing
process plans. The internal Lisp flavor objects are also created
for the system.

One of the major reasons for creating this tool is to allow for
quick and easy modification of work element definitions without
having to write or edit a single line of Lisp source code.

23



Chapter V

FUNCTIONS OF MAJOR COMPONENTS

Process Planning

Editing: Rs-work-element machine_lot

Top
allocate_tray
deallocate_tray
deburr _lot

Top

Autogen Nodes$: Set: NIL Glodai-name
Autogen Headers: NIL
RAutogen Ramtst: Set: PLAN_ID LOT_ID WS_ID TRAY_ID KIT_ID Axridwte-name

deliver_tray Tinet: BORO:60:01:00
fetch_tray User Property: Triple: WS_ID WORKSTRTION-ID Set: Token
foobar-lot User Property: Triple: PLAN_ID PLRN-1D Set: Token
inspect_lot User Property: Friple: LOT_ID LOT-ID Set: Token
load_tray User Property: Triple: LOT_OTY NUMBER Set: Token
nachine_lot User Property: PLAN_VERSION INTEGER Sef: Token
prep_lot User Property: : LOT_TYPE SYMBOL Seai: Token
process_batch User Property: : TRAY_ID TRRY-ID Seat: Token
receive_tray User Property: Triple: TRAY_TYPE TRAY-TYPE Set: Token
setup_area User Property: Triple: TRRY_SER_NR SYMBOL Set: Token
setup_tools User Property: Triple: KIT_ID KIT-ID Set: Token
ship_tray User Property: Triple: Attridute-name Data-type Sat: Token
store_tray
takedoun_area
takedown_tools
unload_tray
Bottom Bottom
Help — Edit Save (reate View Copy — Flaver  Delete List Quit

Click on an attribute entry to replace (L),

delete (M) or edit (R) it.

Figure V=-2(a).

The Work Element Editor Tool, Showing the Machine
Lot Work Element
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The Work Element Editor, Showing the Data Types Menu
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2. PROCESS PLAN MODIFICATION TOOLS

The second major set of process planning tools are those to be
used by individuals wishing to edit, modify, or create process
plans. There are two such tools: the Forms Editor and the Graphic
Network Editor.

2.1. Graphic Network Editor

The internal representation of a process plan is a precedence
graph. This representation allows the specification of parallel
activities for those workstations that can handle them. Figure
V-3 (a) shows a screen image of the Graphic-net editor. The
Graphic-net editor consists of 5 major panes. The first, in the
upper left quadrant, is a viewport showing a portion of the
current procedure specification being edited. The second pane, in
the upper right quadrant, shows the entire procedure specification
that is being edited. The third pane, below the overview, shows
the object description pane. Below this is the fourth pane
displaying various editing functions. The fifth pane, in the
bottom left quadrant, is a text interaction pane where the user
responds to system queries.

The figure shows a precedence graph representing a procedure
specification for the cell level. This tool allows one to
describe activities that can be done in parallel as well as strict
linear sequences. In the current graph are two parallel paths of
delivering items to a workstation followed by a machining
operation then shipment of finished parts and tools to the
appropriate workstations. The choice of the actual sequence can
then be made by the local control system. In future work, we
envision the planning system being able to sort the graph based on
some criterion such as minimizing tool changes or tolerance
stackup. The menu shows the work elements that can be added to a
process plan. Figure V-3 (b) shows a menu of available options
for modifying the precedence graph and selecting other windows.
The items include cutting links, adding links, editing a node in
the graph, etc.

2.2. Forms Editor

A second tool, the Forms editor, exists for viewing and editing
the procedure specification. The information in this window is
exactly the same as that in the previous section; it is simply
presented to the user in a different format. Both tools use the
same underlying precedence graph representation. Figure V-4 (a)
shows a screen image of the forms editor. The forms editor
consists of 4 panes. The first pane, in the upper left, shows the
procedure specification being edited; it has a title section
giving the name of the work element, and a body showing the
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procedure specification. Panes two and three are on the right
upper and lower portion of the screen respectively. They are
examiner panes for. the procedure specification. The fourth pane,
lower left, is a menu bar showing other process planning tools
available to the user.

A procedure specification is displayed in pane 1; it shows the
current step number, the name of the work element, the precedence
steps for the work element (those steps that must be done before
this step), and an estimate of the time it will take for this work
element to complete, followed by two entries labeled done and
autogen. These last two are used to tell the user if all of the
attributes have been given values and whether the node was
automatically generated. The examiner panes are used by the user
to view the details of an individual work element (to look at all
of the current value bindings for a work element's attributes),
and for editing those values. In the examiner pane the user can
also edit the time and precedence steps of a work element. Figure
V-4 (b) shows the available work elements that can be added to the
system.

2.3. Requirements Editor

The requirements editor has exactly the same functionality as the
forms editor but is used for the requirements list section of the
process plan. The look and use of the requirements editor is the
same as the procedure specification editor.

2.4. Header Specification
The header editor is a simple menu containing the current fields

of the header and their current variable bindings. The values can
be edited by selecting the value with the pointing device.
Clicking on the element will allow the user to edit the field.

3. PROCESS PLAN STORAGE
Process plans can be stored in two ways: first, as ASCII text
files on the Lisp machine file system, second, as process plans in

the AMRF database system.

3.1. Local Plan Storage Utilities

The local storage exists on the local file system on the Symbolics
Lisp machine.
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3.2. Database Access Utilities

Currently, the database access facilities are only used by the
planning system for storage and retrieval of process plans in the
ASCII file format.

4. PART MODELLING MODULE

The process planning system has the capability to read and create
an internal representation of a part from the AMRF part model
format. This representation is used by the process planning
system to determine the machining sequence and requirements of the
part to be fabricated within the AMRF.

5. PARSERS AND GENERATORS

Parsers have been developed to create internal representations of
both process plans and part models. Care was taken when
developing the parsers to separate the low level character reading
and manipulation functions from the larger language specific
elements. The same code is used as much as possible by both the
process plan and part model parsers. Similarly, a set of tools
has been developed for writing the internal representation of both
the process plan and part model out to ASCII files.

6. EXPERT PROCESS SELECTION MODULE

The final tool to be described in the process planning system is
an expert process selection that has been developed in
collaboration with Texas Instruments and University of Maryland.
The system is known as SIPS for Semi Intelligent Process
Selection. Using features obtained from the AMRF part model or
defined within SIPS the system will reason about the process or
set of processes that will be best suited to fabricate the
feature. Figure V-5 shows a screen image of the graphics
interface of the SIPS system.
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Successful Machining Sequence for Creation of a
Hole
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VI. IMPLEMENTATION
1. OBJECT-ORIENTED PROGRAMMING

From the beginning of the process planning project within the
AMRF, it had been known that a large portion of the development
would ultimately be implemented using expert systems or other
artificial intelligence approaches. This approach is necessary
because of the large number of decisions which must be made, often
from incomplete information. For this reason, the computer chosen
as the main development station was a Lisp machine. The environ-
ment provided by a Lisp workstation provides useful toocls which
dramatically increase the productivity of a programmer. These
tools include the ability to examine, in detail, every data
structure used by the system. Another important feature offered by
the environment is object oriented programming. An object oriented
approach to programming allows a great deal of flexibility and
modularity in tackling a problem. By virtue of the inheritance
mechanism of objects, computer code can be re-used many times by
different modules. Further, it becomes possible to rapidly

. generate extremely powerful capabilities by inheriting behavior
from other objects. On the Lisp machine, an object oriented
approach is used to control the window environment, menus, mouse
interaction, as well as any application models written by the
user. All of these features and the interpretive nature of Lisp
create a development environment which allows rapid development of
prototype systems.

The terminology for objects in the Zetalisp dialect used in the
process planning system is as follows. The specification of the
behavior of a set of objects is known as a flavor. A flavor
definition identifies which other flavors are inherited, what
local variables exist, (called instance variables), and what
initialization actions should occur. In addition, the behavior of
a given flavor can be specified in terms of methods. Once a flavor
and its methods are defined, an instance of the flavor can be
created. This is called instantiation. An instance corresponds to
a member of the set defined by the flavor. Thus, a single flavor
can have any number of instances. All instances of a given flavor
have the same instance variables and methods, but the variables
can have different values. Finally, any flavor may inherit the
instance variables and methods of any other combination of
flavors. Further information on flavors can be found in [5]. In
the remainder of this text, it is assumed that the reader has some
familiarity with the concepts of object oriented programming.
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2. CAPABILITIES DATABASE

Before a process plan can be created, there must be a
specification of the factory capabilities and of the shop floor
configuration. The planning task consists essentially of
programming in terms of work elements for the equipment present in
a factory. Thus, there was a need to create tools to allow the
specification of a factory in terms of its components and their
capabilities. It was felt that these tools should allow the
reconfiguration of a factory and specification of new equipment,
(or workstations or cells), and new capabilities, all without
having to write any code. Thus, much attention was given to having
a convenient, intuitive user interface to allow the entry of this
data.

2.1. Shop Floor Confiquration

Figure VI-1 shows a view of the screen presented when using the
configuration tool. In the early phases of development, this tool
was called the Choice Tree tool, since it presented the list of
work element choices available for each piece of equipment. While
this name is no longer particularly valid, many references to it
can be found within the code. The configuration tool can be
considered a graphical interface to a database. The database
contains a description of every entity on the shop floor which is
capable of interpreting process plans in the standard AMRF format.
It identifies the control links between these entities, classifies
them according to the AMRF hierarchy, and, most importantly,
identifies the work elements understood by each of the
controllers. This tool serves as the dictionary for plan creation
and editing. The configuration tool has the capacity to store any
number of alternative shop floor configurations, which are called
worlds by the system. Thus, before beginning a planning task, the
appropriate world is loaded into the configuration tool to
identify the factory being programmed.

2.2. Work Elements

When specifying a new work element or editing an existing one, the
configuration tool will invoke a secondary tool called the work
element editor, shown in Figure VI-2. This tool displays the
current definition of the work element being edited or created.
Each field is mouse-sensitive and can be altered at will. In
particular, the fields labelled "User Property" identify the
parameters necessary for the successful execution of a work
element. These are specified in terms of attribute-datatype pairs.
The attribute name can be anything. The datatype field must be a
member of the defined datatypes provided by the work element
editor. The valid types are presented in a menu. The fields
"Autogen Nodes" and "Autogen Header" are no longer used but are
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Choigce Iree Editor
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Figure VI-1l. Facility Editor
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Editing: Rs-work-element machine_lot

Top
allocate_tray
deallocate_tray
deburr _lot
deliver_tray
fetch_tray
foobar~1lot
inspect_lot
load_tray
nachine_lot
prep_lot
process_batch
receive_tray
setup_ares
setup_tools
ship_tray
store_tray
takedown_ares
takedown_tools
unload_tray

Bottom

Top
Autogen Nodess: Sef: NIL Glodal-name
fAutogen Headers: NIL
Autogen Romtss: Sef: PLAN_ID LOT_ID MHE_ID TRAY_ID KIT_ID attridate-meme
Timesr: 8B20:00: 0
User Property:
User Property:
User Property:
User Property:
User Property:
User Property:
User Property:
User Property:
User Property:
User Property:
User Property:

[
Tripie: HS_ID NORKSTATION-ID Ses: Token
PLRN_ID PLAN-ID Sel: Token
;LOY_ID LOT~ID Seaf: Token
LOT_UTY NUMBER Sef: Token

: PLAN_VERSION INTEGER Sef: Token
LOT_TYPE SYMBOL Set: Token
RAY_ID TRRY-1ID Sar: 7oken
TRAY_TYPE TRAY-TYPE Sef: Toten
: TRAY _SER_NR SYMBOL Set: Token
Triple: XI1T_1D KIV-1D Saf: Token
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Bottom
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Attribute: User Property

Description: fin attribute nane tppe fleld plus user-defined fields.
Type a fittribute-nane,

(Type RETURN to end the entry, ABORT to leave it as it 1s.)

Figure VI-2.

38

Work Element Editor




Chapter VI IMPLEMENTATION Process Planning

maintained for backward compatibility with a pre-release version

- of the software. The "Autogen Rgmts" field is used to identify
those attributes whose values correspond to hardware or software
which should appear in the requirements list. It should be noted
that only attributes with a datatype ending in "-ID" are eligible
to be automatically included in a requirements list. This is
because the "-ID" suffix is used by convention to identify
entities which have a corresponding requirement flavor definition.
The "Time" field should contain an estimate of execution time for
a work element.

When a work element has been defined, a flavor is automatically
created with the appropriate instance variables and methods.
During process plan creation, these work element flavors are
instantiated to form the nodes in the process plan precedence
graph.

3. PROCESS PLAN PRECEDENCE GRAPH

To manufacture a part using the AMRF hierarchical approach, a tree
of individual process plans must exist. This tree consists of
plans for each level in the AMRF hierarchy; i.e. Routing Slips for
cell control, Operation Sheets for workstation control, and
Instruction Sets for equipment control. This collection of plans
(a "meta-plan") is represented within the planning system as a
network of linked flavor instances, as shown in Figure VI-3. Each
meta-plan contains an instance of the flavor "Plan" , which the
system uses to reference the meta-plan. The plan instance has
pointers (implemented as instance variables) to other objects,
notably one or more "Routing Slips". Each routing slip refers to
zero or more "Operation Sheets'", and each operation sheet refers
to zero or more "Instruction Sets". In addition, each routing
slip, operation sheet or instruction set points to a "Header"
object, a "Procedure Specification" object and a "Regquirements
List" object. The instruction set objects also point to an "End
Node" which is also pointed to by the original plan object.

The procedure specification object is itself the head of a
precedence graph which describes the sequence of operations to be
performed in a given process plan. A diagram of the structure of
the procedure specification graph is given in Figure VI-4. As can
be seen in the figure, each procedure specification begins with an
object called Proc-Specs, and ends with one called End-node. The
distinct beginning and end to the graph allow unambiguous
traversal of the graph during an editing operation. Between the
beginning and end nodes, any number of work element nodes can
exist. A similar structure exists for the requirements list,
where a work element node is replaced by a requirement object.
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Rgmts-List

Proc-Specs

Rgmis-List

Operation-Sheet

Os-Header

Proc-Specs

Instruction-Set

End Node

4 Is-Header

Process Planning

| Routing-Slip

Operation-Sheet “oe

Instruction-Set

Figure VI-3. Network of Process Plans and Their Elements
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Rough-end-milling

Rough-boring

End-node

Figure VI-4. Structure of Procedure Specification
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3.1. Editing the Precedence Graph

In order to maintain some modularity within the planning systemn,
attempts were made to separate the internal modeling of a process
plan from the user interface functions needed to allow human
editing of the plan. To accomplish this, a supervisor object was
created to control the flow of editing commands to a plan network.
The flavor inheritance graph for the supervisor is shown in Figure
VI-5. The flavor which is instantiated to perform the duties of a
supervisor is "Plan-Sup". It maintains a record of the current
plan being edited, the level within the AMRF hierarchy of the plan
and other bookkeeping information. These capabilities are
inherited from "Bookkeeping-Mixin". When a user wishes to alter a
plan, a request is sent from the user interface code to the
supervisor to perform the necessary alteration. It is the job of
the supervisor alone to maintain consistency of a plan and to
perform the actual alterations to the internal model. In this way,
the user interface system has a set of specific messages it can
use to accomplish changes, leading to a well-defined, controlled
environment. This approach proved to be particularly important in
a team programming environment, where one team member is usually
unaware of the details of implementation of another member's code.

4. INTERNAL PART MODEL REPRESENTATION

The planning system has the capability of maintaining an internal
representation of a part, as represented in the AMRF part model
format. This internal representation is not a full solid model of
the part, but it does contain all pointers between connected
faces, edges, vertices, tolerances and features. This information
is accessible to the planning system by querying the object which
is the value of the variable "plan:*part#*"., It is this
representation which allows an expert system such as SIPS to
automatically generate process steps when given a feature
description. The feature is identified by the feature-id from the
part model file. The planning system parses the part model file if
necessary, prepares the description of the needed feature from the
internal model, and hands it to SIPS.

5. DATABASE FACILITIES

A major function of the process planning system is to store and
retrieve process plans from a database of plans. In the current
system, plans can be stored and retrieved from either a local file
system, or via the network from the IMDAS. To accomplish the
latter, several protocol layers are needed. The plans and the
database requests are handled using the TCP-IP medium over the
ethernet, with the Nfile protocol developed by Symbolics, Inc. On
top of this layer, the system uses common memory, described in
section 5.1.2. The Symbolics machine itself does not directly
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LBookkeeping-Mixin

Work-Element-Sup

Header-Sup Rgmts-List-Sup

[ Proc-Specs-Sup J

Sheet-Sup

Plan-Sup

Figure VI~5. Flavor Inheritance Graph for the Supervisor
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support the AMRF common memory implementation. Rather, it
-communicates with a Sun-3 workstation using Nfile, and the Sun
handles all the common memory manipulations, reporting back to the
Lisp machine. This approach was adopted for ease of
implementation, rather than elegance. Layered over common memory
is the mailbox protocol, which is simply a formatted common memory
variable. Finally, Data Manipulation Language (DML) requests are
placed in mailboxes to communicate with the distributed database
systen.

5.1, Protocols
5.1.1. Nfile

Nfile is a file transfer protocol developed at Symbolics, Inc. as
an alternative to TCP-FTP (Transmission Control Protocol-File
Transfer Protocol). It is a token-based protocol which works with
TCP-IP as well as other media. For the implementation within the
AMRF, an Nfile server implementation was installed on a Sun
workstation to allow for transactions between the Sun and the
Symbolics. This was done to enable process-to-process
communication between the two machines. Such communication was not
possible using the TCP support normally sold for use on the
Symbolics machine. New services defined between the machines
include "db_initialize_ or_startup", "db_access" and "db_status".
The first performs the University of Virginia startup calls for
configuration management [9], the second handles the actual
database calls, and the third is used to query common memory for
the status of any previous database transaction.

5.1.2., Common Memory

The common memory system currently runs on a Sun workstation to
support the planning system running on the Symbolics machine. The
implementation is such that the requests come from the Symbolics
via Nfile as mentioned above. The Sun server performs the
necessary common memory mailbox declarations (declaring mailboxes
named "DS_PP_CMD" and "DS_PP_STS") and reads and writes to these
mailboxes. The common memory implementation looks identical to
other Sun implementations of common memory elsewhere in the AMRF.
The entire Sun server process is started by running the executable
/usr2/nfile/nfiled as super-user. This must be done before
invoking any database queries from the Symbolics. The file

"db access.h" contains the name of the common memory manager host
which will be supporting the common memory. If this is changed, a
new executable must be linked.

5.1.3. DML
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The DML transactions used by the planning system are in accordance
“'with the DML specifications described elsewhere in the AMRF
documentation set. The queries used are SELECT and INSERT although
nothing should prevent other queries being used in the future.
Because of the large size of process plans, the plan text is
communicated to the database via files, rather than putting it in
a mailbox. Thus, the DML queries are stored in mailboxes but refer
to normal files where the plans themselves are stored. These files
reside on the Vax 11/780 system. The two files of particular
importance to the planning system are "/userl/ray/db_buffer" and
"/userl/ray/db _out". The former is used for storing plans into the
database, while the latter is used for plan retrieval. Thus, to
store a process plan in the database, the planning system first
transfers the text of the plan to the file "db_buffer". Then it
places a DML request in the mailbox DS_PP _CMD requesting an INSERT
operatlon, referring to the file "db buffer". The database status
is read from the mailbox DS_PP_STS. Conversely, when retrieving
plans, a DML SELECT message is placed in the command mailbox, then
upon successful completion, the plan is read from file "db_out".

6. USER INTERFACE

A significant amount of work went into the development of an
intuitive user interface design to support the planning system.
This was deemed important since ultimate users may not have much
computer experience. Thus, at all times, the user is shielded from
actually editing Lisp code. Indeed, the actual language used for
the implementation is not readily identifiable from the users
point of view. Examples of the screens presented to the operator
are shown in Figures VI-1, VI-2, VI-6 and VI-7. Details of the use
of all of these screens are given in the Users Guide [1]. The
general philosophy was to rely heavily on mouse interaction and
graphical displays to represent plans, work elements, workstations
and equipment.

45



Chapter VI  IMPLEMENTATION Process Planning

NBS DAPP

AMRF PROCESS PLANNING SYSTEM
wp

MENU
CREATE NEW PRRT
RERD IN PART
READ IN PLAN LOCALLY
READ IN PLAN FROM DB
DB DIRECTORY LIST
ERASE DISPLAY
RESET NETHORK
HELP

Bottom

STATUS SXDOe

Figure VI-6. Process Planning System Operations Menu
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INTERACTIVE PROCESS PLANNING IN THE AMRF

Peter F. Brown
Charles R. McLean

Factory Automation Systems Division
Center for Manufacturing Engineering
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Gaithersburg, MD 20899

ABSTRACT

As more intelligent automated control systems are introduced into discrete parts
manufacturing facilities, it will become increasingly difficult to maintain the centralized
process planning systems in use today. A new approach is required that will permit
distributed manufacturing operations planning via a network of cooperating, intelligent,
process engineering systems. There are a number of reasons why manufacturing process
decisions should be made locally by planning modules that are fully aware of a controller’s
current or expected capabilities. Expert planning modules should be developed for each
controller or class of controllers that are or will be used in manufacturing installations.

To accomplish this goal of distributed, intelligent planning modules, work has started
with the development of a semi-automatic interactive process planning system. This system
has several unique features. First, a hierarchical planning system has been developed for
multi-level factory architecture. Second, all activities within the factory are described by
work elements. A work element is an activity at some level of the factory for which there are
well- defined constraints. Third, standard interfaces have been defined to allow the passing
of information between planning modules and controllers. These interfaces are used for the
organization of the data and not for the data itself. Fourth, a semi-intelligent editor for the
manipulation of these process planning data structures. These tools include editors for
defining work elements and manipulating the process planning data structures. A graphic
network editor is used for defining the "Precedence Graph" of a process plan. All system
editors are based on windows and menu selections. .

Interfaces to factory-wide databases for retrieval of information, such as raw -stock
and tooling, and CAD/Solid Modeling databases are under development. This last interface
will serve three purposes: 1) the input of the initial part geometry to be manufactured, 2) the
verification of changes to part geometry by the process engineer, and 3) the storage of
intermediate geometries to be passed to other factory systems (inspection, machine tools,
robots, vision systems, etc.). This paper describes research efforts at the National Bureau of
Standards (NBS) by the staff of the Distributed Automated Process Planning System
(DAPP) project to define and test this information processing architecture in the machine
shop environment of the Automated Manufacturing Research Facility (AMRF).
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1. INTRODUCTION

In designing a process planning system for the AMRF, the primary issue was not
whether the system should employ variant or generative techniques. The most important
concern was to identify the fundamental architectural concepts that would best support
process planning in a small batch manufacturing facility where all production operations are
under direct computer control. Important research questions deal with- the functional
relationships and the data interfaces between manufacturing control and planning systems:
1) How should planned tasks be specified to controllers? 2) How should alternatives be
described? and 3) What formats should be used to pass data between the planning system
and the controllers? The AMREF project involves developing a testbed for factory automation
research to define and test the system interfaces between modules like process planning,
geometric modeling, manufacturing control, data administration, network communications,
and other factory subsystems. Within the AMRF, process planning is designed to be one of
the primary programming tools of the factory. This paper describes the efforts of the AMRF
process planning project to define robust interfaces to support both the future development of
interactive process engineering tools and automated intelligent process planning systems.

rrent Phil hies in Plannin

There are two basic types of process planning systems in use today: variant and
generative. Variant planning systems are based on a library of standard plans for different
part families that a process engineer retrieves and edits, creating "variants” of basic plans.
Generative planning systems employ expert system concepts, they reason using embedded
knowledge and problem solving techniques to develop new plans. For a more detailed
discussion of the state of the art of computer-aided process planning systems, see Chang
and Wysk [1].

Variant systems typically rely on group technology classification and database
management systems for their implementation. Standard process plans are developed for
each family of parts produced and are stored in the database. When a new part enters the
system, it is first classified by part family. The part classification code is used as a key to
select a copy of the appropriate default plan from the database. This copy is then modified to
reflect the specific processing required due to the unique characteristics of the new part. If a
plan does not exist for the part’s family, then a new default plan is created by an experienced

_process engineer and stored in the database system.

The technology that is required to implement this type of process planning system is
readily available on main frame as well as personal computer systems. Indeed, almost all of
today’s commercial process planning systems employ variant techniques. With this approach
most knowledge resides in the mind of the process engineer, the computer serves mainly as
an organizing tool. Although intelligent generative systems are often more desirable, there
are significant benefits that can be obtained from the variant approach. The development of a
variant system forces an organization to study and classify the activities that it can perform
in order to understand the part families it can produce in its shop. This exercise, in turn,
reveals the kinds of equipment and labor skills that the shop really needs. But, there are
some limitations in the variant approach. It can often be impractical if the shop produces
small batches of widely varying parts. More time has to be spent defining new part families
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and modifying default plans. Furthermore, it does not capture the real knowledge or expertise
of process engineers. The generative approach to process planning does address these
issues.

The main thrust in process planning research today is in the area of generative
systems, for some examples see [15,17]. In these systems, artificial intelligence is used to
automatically create a plan for a new part. An expert problem solving system uses an
internal process knowledge base and part specific data to generate new plans. This approach
requires that a full product definition or part model is encoded in the system in a form that is
accessible by the expert system software. This model should include geometry and topology,
a tolerance model, and information about the functionality of a part. The knowledge base
contains information gathered from process engineers on the how and why of making process
decisions for various types of parts. Decisions are often keyed to the different types of
features that are typically produced on parts. With this approach, the knowledge base
becomes a repository of knowledge gained from the many years of experience of many
process engineers. It also permits the separation of the process knowledge from the part
data, facilitating data driven automation.

To date, fully generative process planning has proved to be an elusive goal, but there
are some signs of progress. The biggest problems have included the representation of
features (pocket, slots, holes), processes (drill hole versus bore hole), and sequencing
information (make pocket before hole). Furthermore, the outputs produced by process
planning systems are non-standard. That is, the organization of data into forms or structures
such as routing and operations sheets differs from system to system. As a general rule,
plans are meant to be interpreted by human readers, rather than by automated control
systems. In the future, it will be essential that process planning interact more closely with
automated control systems. Major questions with respect to the inputs and outputs of
process planning systems must be resolved before fully computer-integrated intelligent
manufacturing systems become a reality.

The AMRF process planning project is tackling questions that concern the
fundamental role of process planning in automated manufacturing facilities. Important areas
to be addressed include: 1) the definition and parameterization of activities or processes, 2)
the development of standard definitions for both design and manufacturing features, and 3)
the establishment of a data representation scheme that can be used to organize and
exchange information between planning, control and other factory systems. The AMRF
process planning project has developed a number of workable solutions in these areas.

AMREF Process Planning Concepts

A primary goal of Automated Manufacturing Research Facility (AMRF) which has
been established at the National Bureau of Standards (NBS) is to develop a small batch
manufacturing system to support research and experimentation in automated metrology and
interface standards for the factory of the future [2,3,4,5,6]. Since process planning is
expected to become one of the primary tools for programming automated factories, its system
interfaces are of great interest. Unfortunately, the conventional views and implementations
of process planning systems are inadequate to support such a factory. The research
approach at NBS focuses on identifying basic concepts that would support the integration of



process planning directly with the software and hardware of manufacturing process control
systems.

Presently, the AMREF is comprised of six manufacturing workstations which perform
both production and support functions. Each of the three machining workstations has a
numerically controlled machine tool, a robot manipulator, flexible part fixturing systems and
local storage for tools and materials [7,8). Another station, cleaning and deburring, has two
robots, cleaning equipment, and buffing wheels. The inspection workstation contains a robot,
a coordinate measuring machine, and surface roughness characterization device. The last
workstation level system, the material handling system [9], consists of two automatically
guided vehicles (AGV), trays for parts and tooling, a storage and retrieval system, tray
roller tables in the workstations, and a tender area for manual support activities. Finally, all
workstations have a controller consisting of one or more small computer systems and
associated software.

Other major factory systems found within the AMRF include: a cell control system,
user interfaces for design and modeling, process planning and off-line programming systems,
a data administration system and a communications network. The major difference between
the systems found in the AMRF and in conventional advanced manufacturing systems, is the
number of different systems vendors involved. Manufacturing subsystems were consciously
chosen from many different vendors to shed light on the "plug compatibility” problems that
would be faced by industrial system integrators.

A major effort is underway within the AMRF to integrate the factory systems,
identified above, into a single automated manufacturing environment. This integration will be
accomplished using some of the hierarchical task decomposition techniques and real-time
sensory interactive control concepts originally outlined by the robotics project at NBS [5,18].
With this approach, all control modules are arranged in a hierarchy. Each controller takes
commands from only one higher level system, but it may direct several others at the next
lower level. Long range goals enter the system at the highest level and are decomposed into
subgoals to be executed at that level or passed down as commands to the next lower level.
Status information, based on real-time sensory data collection, is generated at each level
and is passed up as feedback to the next higher level. The preparation of planning data, that
will enable these hierarchical control systems to achieve their goals, is the primary role of
process planning.

The AMREF process plan data structures are intended to be generic so that they can
be used in a variety of manufacturing organizations from small shops to large factories.
Process plan data structures have been defined, using formal language specification
techniques, that can be transmitted electronically between planning and control computers.
Although the formats are quite readable, they could easily be enhanced by print formatting
routines to be made more suitable for human interpretation and execution.

By defining standard process planning data structures, an organization will be able to
develop planning systems in a modular fashion. An interactive plan editing system can be
developed initially. Later expert planning modules can be added without a change to basic
data formats or execution system architectures. Another important benefit of standard data
structures is that it permits the implementation of planning systems by multiple independent



developers. It will also allow for the design of intelligent control systems that will be able to
accept these standard process plans. By taking this approach, many organizations may be
able to participate in the development of planning and control systems. Each developer could
focus his efforts on developing specialized intelligent planning capabilities, building upon the
programming work of others.

Our approach has focused on first defining process planning data structures that could
eventually be used to construct a distributed generative process planning system. Such a
system would involve the dynamic interaction between intelligent planning and control
systems at each level within the AMRF. A number of interface issues between the planning
and control systems must be resolved. Some of the interface issues that fall within the realm
of the process planning project include: 1) the development of a feature-based representation
of part geometry to be used as an input to process planning, 2) the specification of a plan
syntax to be used as a neutral file format for transferring plans out to target control systems,
and 3) the definition of basic work elements, i.e. generic or specific manufacturing activities
that each control system is capable of executing.

The work element is the basic procedural entity in the AMRF planning and control
system. The work element is a function or activity which is carried out by a manufacturing
control system at a particular level in the factory hierarchy. A work element has a name, a
set of parameters, a duration, and a list of precedent steps numbers. The numbers identify
the steps in the plan that must be performed prior to this one. Work elements are
parameterized and organized into procedure specifications within process plans. The
parameters of complex work elements, usually performed by higher level systems, refer to
lower level process plans. These process plans specify the decomposition of the complex
activity into simpler work elements supported at the next lower level in the hierarchy. Within
controllers, work elements are implemented as subroutines that carry out error checking,
database transactions, as well as physical changes to the manufacturing environment.

Generic Data Interfaces

A major goal of the AMRF project is the identification of generic functions and data
structures for advanced manufacturing systems that could be used as a basis for the
development of industry-wide interface standards. Generic interfaces, which are relevant to
process planning, have already been defined and implemented within the AMRF to support
interaction between a diverse set of applications processes. A communications mailbox
protocol has gives AMRF applications processes access to each other over the
communications network [10]. A control command-status protocol [10] has been developed
which provides a means by which supervisory controllers can assign production work orders
to subordinates and receive feedback status. A work order management system, described in
[10], bas been implemented in which process plans are used to specify the decomposition of
complex jobs into simpler tasks [10]. A level independent neutral process plan file format
has been developed for transferring this data between planning and control systems [12].
Process plans are deposited in a common database for later retrieval and execution by
automated manufacturing control systems. A generic interface to the common database [13]
has been created to give control systems ready access to required data, such as: command
and status messages, work orders, process plans, control programs, geometry descriptions
and other reference data.



Although there are many differences between the automated control systems found at
each major level in the AMRF hierarchy, they all seem to have some functions and
responsibilities that are characteristic of project managers. Hence, project management
concepts have provided a foundation for defining the behavior of planning and control systems
within the AMRF. Project managers, regardless of their level within an organization, tend to
perform some generic planning and execution functions. Typical functions include: 1) work
decomposition or problem reduction -the breakdown of complex activities into a
interdependent network of simpler ones that can be routinely carried out by subordinates, 2)
resource management - the identification, acquisition and allocation of required resources,
and 3) estimation or prediction - the analysis necessary determine project cost, time and
quality trade-offs.

Project managers often use network scheduling tools such as critical path method
(CPM) or program evaluation and review technique (PERT) to define, sequence and monitor
project activities. A detailed discussion of PERT, CPM, and other project management
methodologies can be found in [11]. The data that is typically required by these systems
includes: activity specifications and precedence relationships, resource requirements, time
and cost estimates. With the exception of cost estimates, the process plan file structure is
designed to convey this information to control systems.

A process plan is comprised of four major sections: 1) Descriptive Header - contains
static index and summary data, 2) Parameters - lists all variables for which real values must
be substituted at execution time, 3) Requirements List - identifies all resources to be used
during the execution of the plan, and 4) Procedure Specification - describes all work
elements, their precedence relationships, and their attributes and specific value bindings. The
next sections are devoted to a discussion of the process plan format.

Procedure Specification.

The Procedure Specification is probably the most important section of the process
plan, it describes not only all of the activities or work elements to be performed, but gives
information about their order of execution. This information can be represented as a
precedence graph. Figure 1 shows the precedence graph for the machining operation to be
performed on a part. This graph allows the process engineer to explicitly state that some
steps may be done in any particular order, allowing for parallel activities, while other have a
strict sequence or precedence relationships. The nodes of a precedence graph are the work
elements. The graph structure used to represent process plans permits the specification of
alternate activity sequences. Intelligent control systems can use this information to continue
the manufacture of a part when some forms of error conditions arise. The control system can
search through the precedence graph to see what other nodes or step can be performed while
notifying a supervisor of any unresolvable problems, a major step in integrating sensory
feedback with intelligent manufacturing planning and control systems.

The precedence graph in figure 1 represents the process plan for the part shown in
figure 2. Figure 2a shows a part for which a process plan is to be written; the part is broken
down into a feature graph [14,15], which defines features (such as pockets, grooves, holes)
and the access. The access defines which features block or cover other features. Once the
features are determined one can define the procedure specification as to how to produce the



part. Figure 1 shows the order in which we wish to produce the work elements (nodes of the
graph): INIT, CHAMFER_OUT, POCKET, GROOVE, CHAMFER_IN, HOLE, and CLOSE.
These work elements correspond to the features defined in the feature graph. The precedence
relations, as drawn in the precedence graph, can be interpreted to mean that after initializing
the machine (INIT), the next step could be either CHAMFER_OUT, POCKET or
GROOVE, in any order (in the feature graph these features do not interact, so they could be
produced in any sequence). But before either the CHAMFER_IN, or the HOLES, can be
produced, the POCKET operation had to be performed. It is important to point out here that
the holes could have been produced before the pocket, but the process engineer decided that
it would be best to produce the holes after the pocket. Thus the precedence concept is used
to limit or structure the machining sequence. This graph can now be linearized by various
constraints, such as minimizing tool changes, tolerance stack-up, etc.

This is the highest level that the process engineer will deal with a single part, in
terms of the manufacturing features. These features will then be decomposed into a set of
machining activities that are best suited for the constraints on a feature (such as its
tolerance attributes). Using the previous example the hole feature may be produced by a
simple twist-drilling operation. If the hole feature required tight positional and roundness
tolerances, several machining steps might be needed, such as: center-drill, twist- drill, and
reaming. Using the process planning editor, the process engineer will first define the part .
features. Then using an expert process selection module, the features will be decomposed
into a set of machining process steps. The output of the expert system is in the process plan
format [12]. This will allow the process engineer to modify the individual processes, as well
as to monitor the specified processes.

The procedure specification contains the information about the sequence of the
operations to be performed. Work element parameters reference hardware systems and
software data objects used in the performance of a particular process. This information is
consolidated into the Requirements List section of the process plan.

Requirements Lists

The requirements list section contains a list of all the hardware and software needed
to execute the procedure specification we have just described. This structure has a similar
function to that of a bill of materials. When a plan is executed in the AMRF, a controller can
check to see that all items listed in the requirements list are available before executing the
procedural steps of a process plan. This section of a process plan could also be used by the
scheduler to determine that all items are available before the plan is even released for
production. The requirements lists also identifies all other process plans referenced in the
procedure specification.

In an effort to make the process engineers job easier, the generation of the
requirements list can be done automatically. When the process engineer defines a work-
element, there is a procedure for identifying items that will be added to the requirements list.
Upon completion of the procedure specification, the system supervisor will query each node
to ascertain what items it requires to perform its task, and these items are then added to the
requirements list. Currently, there is only minimal checking for duplication of items. After the
system has generated the requirements list, it is available for editing or viewing by the



process engineer.

In the example given in Figure 1, the requirements lists would contain a list of tools,
process plans, control programs (N/C, robot, or inspection), fixtures, robot grippers, etc.
Figure 3 shows the major fields of each entity in the requirements list. The fields are a label,
a descriptive name, a set of attribute-value pairs, and pointers to any sub-elements of an
item. This pointer item is used to describe assemblies or complex items. :

Parameters Section

The current implementation of the process planning system is an interactive system,
process plans are prepared off-line. The parameters section allows the engineer to specify in
a symbolic way that a particular item is to be used, but does not actually specify a serial
number (i.e. specify plan variables). In a simple example, the process engineer wishes to
specify that a 1/2" 2 fluted endmill should be used for a milling operation. At the time of plan
creation the process engineer could identify this tool as $$tool- 001 (the syntax of a process
plan has all parameters preceded by $$), and when the plan is being executed $$tool-001
will be replaced by the actual serial number of the physical tool. In this way the process
planner can specify completely how a job should be done without overly constraining the
execution. It permits the passing of information that is useful to the work-element software,
but is not known at planning time, rather only at run-time.

Header Section

The header section contains certain bookkeeping information used to index or catalog
the plan. As the planning system discussed in this paper is dynamic, not all of the entities
listed here are fixed. Several of the fields in the header are used by the data administration
system as keys for retrieval of plans. These fields are PLAN-ID, PLAN-VERSION, PLAN-
TYPE, and PLAN-NAME. In addition there are other header fields that will be used to keep
track of important information such as PROCESS-ENGINEER, PART- NUMBER, GT-
CODE, ENGINEERING-DRAWING-#, etc (See figure 3).

In order to be consistent and save on the duplication of work needed to read process
plans, all levels of process plans use the same internal format. It is important to reiterate
here that these planning structures are used to organize the data, not to limit the specific
data that appears in the process plan. As long as one accepts the process planning data
_structures and their associated formats, the user can define or associate any kind of
functionality to work elements that he/she wishes. The next section will discuss the file
format developed to exchange information between planning systems and other systems
(controllers, databases, etc.).

2. FILE FORMAT

As part of interface standards work, a method has been developed for exchanging
process plans between various systems. Using formal language specification techniques
(Backus-Naur), a grammar has been defined for the process plan data structures. Using this
grammar, an ASCII file containing the process plan can be generated (for an example see
figure 3). This file can be passed between various computer systems, translated back into a
control systems internal representation of activities to be performed. It is then used to
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sequence the part through manufacturing. To test our specifications we have developed and
written parsers in several languages to construct the appropriate data structures. The file
exchange format is quite human readable as we make liberal use of formatting when writing
the ASCI file.

3. PROCESS PLAN HIERARCHY

The same basic structure is used for process plans at all levels of the factory. In the
AMREF, currently only the lowest three levels of control are operational: Cell, Workstation
and Equipment. The names that have been given to the classes of plans at these levels are,
respectively: Routing Slips, Operation Sheets, and Instructions Sets (see Figure 4). The role
of the plans at each level is described in subsequent sections.

Cell Routing Slips

Cell routing slips are used to coordinate the movement and processing of materials,
parts, tools, and other needed items between and at workstations. A brief example will best
illustrate this idea, (see figure 5). In the example the cell control system is told to deliver a
tray of parts and one of tooling to the vertical workstation; the vertical workstation is told to
receive the two trays, then to setup the tooling area, machine the lot of parts, takedown the
tooling area, ship out the trays and, then to finally have the material handling system deliver
the trays to some other AMRF system. Each one of the nodes in the graph represent a work
element. The node MACHINE_LOT will decompose into an activity at the next level in the
AMRF, which is the workstation level. The process planning data package at this level is
known as the Operation Sheet.

Workstation Operation Sheets

The next lower level of factory control is the workstation level. Process plans at this
level are used to coordinate equipment level activities. The MACHINE_LOT work element,
from the previous example, can be decomposed into an entire operation sheet. Figure 6
shows a simple sequence of MOVE_PART, MACHINE_PART, and MOVE_PART, which
would be repeated for the number of parts that are in the lot. MOVE_PART, which is used
for loading a part into a fixture, involves the coordination of the robot, machine tool, and
fixturing system. Finally, this level of the process plan is decomposed into a sequence of
tasks for the equipment to perform. The decomposition of the MACHINE_PART work
element provides a good example of the next lower level, the Instruction Set.

Equipment Instruction Sets

The bottom level of the process planning hierarchy is the Instruction Set. This is a
detailed sequence of operation for an equipment level to perform. The example given here is
the MACHINE_PART work element that is carried out by the vertical milling machine.
Primitive work elements appearing in the Instruction Set describes features such as pocket
and holes that are to be produced. Figure 1 shows the machinable features and machine tool
work elements that make up the part. The example has shown how high level tasks can be
broken down into sucessfully smaller and smaller tasks using the process planning data
structures.
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4. THE AMRF PLANNING SYSTEM

The specification of a data flow model and neutral data interchange formats was a major step
in the development of the AMRF interactive process planning system. The model of data
flow between planning and control assumes that each controller in the hierarchy retrieves
plans that have been placed in the common database by the process planning system (see
Figure 3). The primary role of the process planning system, in this model, is to provide
interactive tools for generating and storing process plans for new production parts which are
later executed by the control systems. Specified inputs to the planning system include:
process planning work orders assigned by facility control, initial and final part geometry
specifications, definitions of controller work element capabilities, various kinds of reference
data, and the plan editing decisions of a skilled process engineer. Outputs from the planning
system include: work order status information for facility control, graphics displays for the
engineering user, process plans which define manufacturing sequences for each control
system involved in production operations, and part model specifications for each new
intermediate geometry. This section describes the architecture and operation of the current
implementation of the AMREF process planning system.

Lisp, Flavors, and the Lisp Machine

The process planning system was written entirely in Lisp using an object-oriented
programming environment. The development plan called for first building an interactive
process planning system around the work elements and the interfaces to computer control
systems previously described. The more long range goals call for the development of expert
planning modules. A decision was made to develop the system using a Lisp machine so that
it would be easy to upgrade to more expert planning modules. Lisp, the primary language of
the AI community for the development of such systems, has a number of advantages. It is an
interactive language so changes can be tested almost immediately, instead of the edit-
compile-debug cycle of more conventional languages. Tools for constructing friendly user
interfaces, are provided that are mouse and menu- driven. To aid in software development,
there are window and menu- based debugger and inspection tools. A language sensitive
editor and an object oriented programming environment are also provided. As discussed
earlier in the paper, the planning system’s most fundamental concept is the work element,
which is analogous to the operator concept from artificial intelligence problem solving
systems. Each work element has a set of constraints, and when evaluated, makes a
specified state change in the system. For a more detailed discussion of the subject see [16].
These work elements, when linked together, form a process plan which describes how to
make a part. This representation can be supported in a robust way by the use of an object-
oriented environment known as Flavors. In this environment one defines objects, giving
them certain behavior. To activate an object a message is sent to that object asking it to
invoke a method, (a procedure which changes the object data and/or initiates other
messages).

Flavors, Object-Oriented Programming and the Planning System

Earlier we described how a precedence graph is used by the planning system to
represent how manufacturing operations are to be performed. Internally, a directed graph is
used to represent the precedence relationships. Each node in the graph represents a work-
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element, whose precedence relationship is defined between a node’s parents and its
children. In object-oriented programming, each node can be given a behavior, such as how to
act as a node in the network. The current implementation of object nodes includes how to add
or delete oneself within a network, display oneself, modify ones attributes and values, etc.

In the requirements lists section of the paper, the automatic generation of the requirements
was described. This serves as a good way to illustrate the benefits of object oriented
programming. In the methods of a work element is a list of requirements that must be
specified to complete this task. When the process engineer asks the system to automatically
generate the requirements list, an internal supervisor sends the requirements message to
each work- element. They, in turn, respond by sending there requirements to the
requirements-list supervisor. This supervisor then sorts the requirements list checking for
duplicates, etc. In this way we were able to develop software that closely matches the way
people conceptually handle such problems. -

The implementation scheme employed also allows for modular system design in the
construction of the user interface. Within the planning editors there are three major modules:
1) the internal data representation ( a precedence graph), 2) a supervisor, and a 3) wvser
interface manager. The process engineer interacts with the interface manager. The IM is a
set of windows that display the current process plan. Items are mouse sensitive (when the
mouse is moved around the screen these items are (highlighted). The user points at an
item, clicks a mouse button, and a message is sent to the active window highlighting the
chosen item. The addition of a new node to the precedence graph is a good example. The
interface manager displays a list of all the valid work elements that the user can choose from.
One of these items is then selected. A message is then sent to a supervisor describing the
transaction to take place ( i.e. add a new work element named "Do it" after the fourth step in
the process plan). The supervisor then sends the appropriate messages to the internal data
structures. Each process plan is an individual entity in the Lisp machine, so the supervisor
keeps track of what is the active plan (the one actually being edited) and then it knows
where the update message is to be sent. There is no limit on the total number of process
plans that can be in the Lisp machine, but currently only one is active for editing. When the
user wishes to change to a different plan, the user interface sends a message to the
supervisor asking for the plan. The supervisor then gets from the planning system internals
the list of applicable work elements on this level and the actual plan.

Through a series of transactions, the window is updated with this new plan, and the
work-element that can be added to the plan are then displayed. This scheme was
modularized in order that various modules could be distributed to different computers to
implement a more distributed planning system.

5. SUMMARY

A process planning system has been implemented to demonstrate the concepts
described in this paper. This system is currently being tested and evaluated within the
AMRF. This last section of the paper will describe some of the major tools we have
implemented, current work in progress, and finally the future direction we will be taking.
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Current Implementation

The current implementation of the process planning system has several unique tools
for the development of process plans. As described earlier, the work element is the
fundamental object within the process planning system. The dynamic nature of the AMRF
require an easy to use, flexible tool for creating, editing and viewing the work elements. This
is the work element and requirements database. This data base allows AMRF projects to
define the work elements and requirements for their workstations and equipment. The tool is
graphically oriented, showing the hierarchy of the facility. Figure 7 illustrates the tool. The
three levels of the AMRF are shown including the equipment associated with each
workstation. The work element choices for the vertical mill are displayed in the menu. The
last tool is a work element template editor. This tool is provided for control system
implementors to define the work elements their systems can execute.

The output of this system is to generate lisp code to be used by the planning system.
The second major set of tools is for the editing of actual process plans. These tools take
shape in three areas; a top level for storage and retrieval of process plans for particular parts,
a graphical editor for the development of the precedence graph, and a more text oriented tool
for editing the individual values of a work elements attributes. The top level tool for keeping
track of process plans allows the user to read plans in from files, define new process plans,
edit existing plans or browse through all existing process plans. The structure of the system
currently uses part names as the highest level. Each part can be opened to see its routing
slips, operation sheets, and instruction sets. Each item is indented a certain amount to
signify its level within the AMRF hierarchy. This tools resembles a hierarchical file system
in a computer. Once the process engineer selects the plan to be edited there are two tools
that can be used to develop plans. Figure 1 shows the tool referred to as a graphic-net
editor. This tool is used at the more conceptual level of planning to lay out the high level of
tasks to be performed. Another tool is used to fill in all of the attributes of a work element.
This tool has a different set of windows for each of the major process planning internal data
structures, procedure specification, requirements lists, and header section. When the
process engineer is finished editing the process plan, it is written to a file using the file
specification discussed earlier in the paper.

stem Interfaces Under Development

There are currently three major subsystems under development, the interface to a
CAD/Solid modeling system, the data administration system (DAS) and the work order
management system. All of these interfaces will be used to obtain information about the
parts to be produced. The solid modeling interface will serve as a tool to get information
about the part geometries to be produced including the dimensional and tolerancing
information. It will also be useful for the process engineer to verify the changes to the part
geometry, and to do high level interference checking against fixture, and other forbidden
volumes. The interface to the DAS will be used to store process plans and to search for
process plans within the DAS. It will also be used by the planning system to obtain
information about the production capacity of the entire facility (obtain tooling reports, etc.).
The interface to the work order management system will provide a tool by the facility level
system to give planning jobs to the process planning system and for the planning system to
report back on the status of process plans.
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Future Work an nclusion

This first implementation of the planning system has provided quite a learning
experience for the staff of the process planning project. The use of Flavors, the lisp machine,
development of a file exchange specification, and prototype expert planning systems has
given insight into a number of strengths and weaknesses of our current approach. These
lessons have pointed out a number of areas that need work in future implementations. A
more robust internal representation is needed to allow multiple relationships to exists
between work eclements in the precedence graph. We have been exploring using
commercially available expert system shells such as Knowledge Craft, or KEE. These tools
would provide some form of portability across a variety of computer systems. A second
major thrust is to design the planning system to be more closely tied in with control
systems, so that the planning module gives tasks to a controller while exploring possible
alternative paths. A final area of major interest is the development of expert planning
modules. Currently we are testing a interface to SIPS [17] for the work of transforming
features to process steps. We have been enhancing the knowledge base to reflect the
process capabilities of the AMRF, and are using the system as a learning tool for the
development of future expert planning modules.

In closing, we have developed a scheme for implementing an intelligent process
planning system, and for interface this system to control system within the AMRF. With this
information processing architecture, we will be laying the ground work for the next generation
of manufacturing facilities.
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Figure 2, A feature access graph
for a simple part, (a) the origina:
part, (b) machinable features and
their relationships.

a)

A-18



-=-PROCESS_PLAN-~
--HEADER_SECTION=~-

PLAN-ID t= PP-VMILL-1;
PLAN¥ERSION 1= 1;

PLAN-TYPE t= INSTRUCTION-SET;
PLAN-NAME te "FILTER-HOUSING";
PART-NUMBER t= 31;

«=END_HEADER_SECTION-~
~=PARAMETERS_SECTION--

$$TOOL-SET001 : TOOL-SET;
#STOOLO0] s TOOL:

=-END_PARAMETERS _SECTION-~
==REQUIREMENTS_SECTION--

<<1>> TOOL-SET
{ TOOL-SET~ID

=> $$TOOL-SET001,

COMPORENTS = (2,3,4) );
<<2>> TOOL
( CBANGER-SLOT = 2,
TOOL~-TYPE s> END-MILL,—
TOOL-1ID =>-S$$TOOLOQ
DIAMETER => 0.5
COMPONENT-OF => (1) };
==END_REQUIREMENTS_SECTION~-
«=PROCEDURE_SECTION-~
<<1>> INIT
( PROG-ID => NC-1,
PROG-NAME => "filter-housing”,
BLOCK-NAME => BLOCK1,
SYSTEM => VMILL,
TYPE => PRIMITIVE,
PREC-STEPS = {),
TIME => 0000:00:00:56 );

<<2>> CHAMFER~-OUT

( CHANGER-SLOT => 6,
FEATURE => BLOCK,
2-SURF => 0,
BLOCK~NAME => BLOCK1,
SYSTEM => VMILL,
TYPE => PRIMITIVE,
PREC~STEPS = (1),
TIME => 0000:00:01:24 ):
<<3>> BOLE
( CHANGER-SLOT > 7,
CENTER-X => 0.725,
CENTER-Y => 0.725,
DEPTH => 0.25,
2-SURF => =0.625,
BLOCK~NAME => BLOCK1,
SYSTEM => VMILL,
TYPE => PRIMITIVE,
PREC-STEPS => (4),
TIME => 0000:00:00:50 );

==END_PROCEDURE-SECTION-~
==END_PROCESS_PLAN~--

Figure 3. Sample of process plan file format (representative data
is shown, some data has been omitted due to space limitations).
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Abstract

A key factor in applying advanced programming concepts 1o
an industrial manufacturing environment is the establishment of a
language to specify the process steps involved. In the Automated
Manufacturing Research Facility at NBS, these process steps are
described in terms of “"work elements.” Work elements are
specified in process plans which are passed to conwollers
throughout the facility. This paper describes the properties which
were considered in the definition of work elements from the per-
spective of automated process planning and the control system
implementation at NBS.

The control system is based upon a philosophy of hierarchical
control, where high level goals are decomposed through a succes-
sion of levels, each producing sequences of simpler goals to the
next lower level, with the lowest level generating drive signals to
robots, grippers and other actuators. To support this scheme, the
work elements define the activities that can be carried out at each
level of the hierarchy.

The work elements are implemented with different software at
each stage in the manufacturing sequence: process planning, com-
munication, and execution. Work elements have been implemented
within process planning as programming objects which have slots
to describe their function. The information also exists in ASCII
"flat file" format, which can be communicated through a common
database. Finally, work elements are subroutines which are exe-
cuted on shop floor controllers. The work elements are instantiated
in one form or another as a production job goes from planning to
the database, and subsequently executes at a controller. By antici-
pating the use of the work elements in expert systems and
advanced programs, the introduction of intelligence into the
manufacturing environment is greatly simplified.

1. Introduction

The Automated Manufacturing Research Facility (AMRF)
was designed as a test bed to develop, test and evaluate potential
standards in the automated mamufacturing industry, (1,2,3,4,5).
Since components of manufacturing shops are generally purchased
from different vendors, the required compatibility among machines
in fully automated shops will depend heavily on interface stan-
dards. At the AMRF, a wide variety of "off the shelf” components
have been integrated into a single coordinated system, using well-
defined communication protocols.

In order to easily introduce advanced programming tech-
niques on the shop floor, automated control standards must also be
defined. These control standards should draw upon concepts from
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artificial intelligence (Al) research, (6). This is particularly impor-
tant in the area of process planning, which concerns the
specification of operations to be performed in order to produce a
desired part. Process planning involves much abstract reasoning,
and therefore can use many of the approaches adopted in expert
systems and other artificial intelligence applications. A standard
process representation must incorporate Al concepts to allow these
approaches to be easily implemented. An important part of the
AMREF representation scheme has been designed with this in mind,
and is called a "work element". An interactive process planning
system currently uses the work element scheme to generate plans
which are executed to produce real parts, (7).

2. Overview

This paper describes the design considerations for a work ele-
ment, and its use in an operational manufacturing facility. Section 3
introduces some concepts commonly used in artificial intelligence
research. Section 4 discusses the definition and characteristics of a
work element. Section 5 presents the implementation of a work
element for a machine tool in the AMRF. Secton 6 extends the
work element definition to the hierarchical control system used in
the AMRF. Section 7 identifies future directions of research for
process representation. Section 8 presents a summary of the paper.

3. Artificial Intelligence Concepts
State Space

A useful concept in artificial intelligence research is the state
space, or search space representation, (6,8). The state of the world
as known by a computer program Is one state in the defined state
space. Each change in the program’s perception of the world is
represented as a transition from one state to another in the state
space. The state transitions can thus be considered as links between
states, and the state space can be represented as a network.

Operators

Work elements can be thought of as operators in 2 state
space. Whenever a work element is invoked, a state transiton takes
place. A process plan corresponds to a sequence of operators
applied to an initial state, resulung in a goal state. Thus, automated
process planning corresponds to a search of state space for the goal
state; from the search procedure the state transition operators can
be found. The challenge in applying Al to automated manufactur-
ing is to represent the manufacturing task in the framework of Al
concepts such as the ones described here, so that the problem can
be handled using current Al technigues.

U.S Govemment work not protected by U.S. copyright.



4. Work Element Characteristics

A manufacturing sequence can be conveniently expressed in terms
of results-oriented processes, (9,10). These processes can be
thought of as transitions in State space. A process plan would thus
be a collection of state transitions, from a state containing the part
blank, to a state containing the finished part.

A work element is the representation of a state transition, and
serves as the language for manufacturing sequences. Process plan-
ning consists of selecting and parameterizing the appropriate work
elements to traverse the state space from the initial to the goal
state, (7). While process planning is widely practiced, it has not
been standardized. Robots, machine tools and other controllers all
use different control schemes and programming languages. For
maximum efficiency, a uniform control structure should exist
throughout a facility, using process plans based upon work ele-
ments. It is within the work elements that information specific to
one controller should be stored.

There are several roles for a work element in the manufactur-
ing environment, comesponding to planning, communication, and
execution. In the AMRF, a work element is translated from one
form to another to meet the needs of each role.

Planning

In the planning role, a work element exists as part of the pro-
cedure specification of a process plan. A process plan represents a
set of state transitions and can be represented as a precedence
graph. The implementation of a planning work element includes
knowledge of any manufacturing steps (work elements) which must
precede it. For example, a machining operation must always be
preceded by a fixwring operation to hold the part in place. This
knowledge can be contained within a work element such as
"Drill_hole" which will verify the existence of a fixturing work ele-
ment each time it is invoked. In addition, a work element must
contain all the parameters to completely and unambiguously specify
the manufacturing step. It is also useful to maintain a list of all
hardware and software requirements needed to accomplish the step.
Finally, the work element should have information needed for
optimization calculations such as expected duration and cost.

Communication

A work element must also be able to transfer instructions
from the planning environment to the execution environment. The
overriding requirement for this is compatibility among systems;
therefore the work element should exist in as simpie and universal
a form as possible. Some neutral, machine independent format
must be used which can be understood by all controilers in a facil-
ity and which contains the essential information from the work ele-
ment in the process planning role.
Execution

Work elements are executed by calls to subroutines resident
within the factory controllers and are invoked with parameters to
suit the particular application. Some of these parameters are bound
in the planning stage; others by the controllers themselves. In gen-
eral, the subroutines include verificaton and error handling rou-
tines. A more detailed discussion of the execution of work ele-
ments is outside the scope of this paper; the reader is referred to
(11,12).

5. Work Element Implementation
Pianning
In the AMREF, the planning work elements have been imple-

mented using a frame-based or object-oriented approach. The major
benefits of object-oriented programming are:

1) Local variables (slots) can be assigned to each object. In
the case of process planning, each object represents a work
element. :

2) Distinct behavior can be defined for each object (methods).

3) The behavior and slots can be inherited from classes of

objects.

The slots are used to store information pertaining to a particu-
lar frame in the form of attribute-value pairs. Table ] shows some
of the slots used in the process planning system for the work ele-
ments. The slot "Autogen-nodes” is used to identify any work ele-
ments which must precede the one being defined. Thus, the plan-
ning system can automatically insert planning steps which may be
missing by referring to this slot value. These automatically gen-
erated steps will be work elements as well, with the "Gen" slot set
to "T", indicating that it was inserted automatically. "Autogen-
rqmts” meets a related need by specifying any pieces of equipment
or computer code which will be needed to execute the work ele-
ment being defined. The specified requirements can also be
automatically added to a running list of requirements which accom-
panies each procedure specification. Both of these slot values help
to make the job ~f process planning more convenient for the pro-
cess engineer and to avoid careless oversights. The slots "Parents"
and "Children” are used to construct a precedence graph for the
process plan. These are simply the pointers to the previous and
subsequent steps in the plan, respectively. "Complete” is used to
signal when a particular work element has been fully defined. The
process plan is not complete until all the component work elements
have this flag set to "T".

Attribute Value Comment

System - Set to the cell, workstation or
equipment meant t0 execute the
step ’

Time - Set to the estimated execution

time for this step

A list of prerequisite work ele-
ments

Autogen-nodes -

Autogen-rgmits - A list of hardware and software
requirements necessary for suc-
cessful execution of this work ele-
ment

Parents - Pointers to previous step(s) in the
plan

Children - Pointers to subsequent step(s) in
the plan

Complete TorF Flag denoting work element is
completely specified

Gen TorF Flag denoting whether work ele-
ment was automatically generated

Type Complex Defines the type of work element

Primitive
Macro
Plan_id - References the plan used to

expand this step at a lower level

Table 1. Minimal set of auributes in a frame-based work element
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User-defined slots

SYSTEM TYPE
PLAN_ID CHANGER_SLOT
CENTER_X CENTER_Y
DEPTH Z_SURF
BLOCK_NAME \

Type-checking slots
SYSTEM-DATATYPE TYPE-DATATYPE

PLAN_ID-DATATYPE
CENTER_X-DATATYPE
DEPTH-DATATYPE
BLOCK_NAME-DATATYPE
Valid choice slots
TYPE-CHOICES
CHANGER_SLOT-CHOICES
CENTER_Y-CHOICES
Z_SURF-CHOICES

CHANGER_SLOT-DATATYPE
CENTER_Y-DATATYPE
Z_SURF-DATATYPE

SYSTEM-CHOICES
PLAN_ID-CHOICES
CENTER_X-CHOICES
DEPTH-CHOICES
BLOCK_NAME-CHOICES

Others
ATTRIBUTES AUTOGEN-NODES
AUTOGEN-HEADER AUTOGEN-RQMTS
TIME COMPLETE
GEN COMMENT
PRINT-NAME PRINTPARENTS
CHILDREN VALUE
VISITED PARENTS

Table 2. Slots in the frame-based version of "Drill_hole"

Table 2 shows the slots in an example planning work element
which is used to drill a hole at a machine tool. In addition to the
slots identified in Table 1, there are attributes necessary for the
execution of the hole-drilling process, including hole depth, diame-
ter (using "Changer_slot"), and location. In constructing the inter-
nal implementation of this and other work elements, the planning
system automatically included some supplemental slot definitions.
For example, "Changer_slot-datatype” and "Changer_slot-choices”
were also defined. The "Changer_slot-datatype” slot provides for
type-checking, which is the simplest form of verification of user
input. The "Changer_slot-choices” slot, if set 10 something other
than "nil", provides the process engineer with a set of valid choices
when specifying the "Changer_slot” slot value. The choices are
derived from contextual information, thus presenting the process
engineer with whatever choices are reasonable at that particular
time. This again reduces the possibility of operator emror when
using the planning system.

The second major performance enhancement when using
object oriented programming techniques is that of message passing.
Each programming object is defined as having slots, described
above, plus specific functionality, defined using "methods”. A
method is a function definition for a particular programming object.
It is these methods which give the objects their different behavioral
characteristics. Thus, an object can be instructed how to insert
itself into a process plan, or how to find out all the previous steps
in a plan. By defining a set of methods, process planning becomes
a matter of sending messages to the appropriate work element
objects to insert themselves into a plan and to communicate with
the other objects in the plan. Rather than trying to explicitly keep
track of all the steps required, the objects update themselves about
the planning hierarchy and their relationships. This makes the
maintenance of a valid plan much easier, since the objects can have
methods defined to check for prerequisite work elements, hardware
and software requirements, as well as contextual information deter-
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mining their behavior. By delegating the responsibility of main-
taining 2 plan to the work elements themselves (plus some other
programming objects) it is no longer necessary to have a single
master program which anticipates all possible errors.

Perhaps the most significant improvement offered by frame
based systems is the concept of inheritance. A given frame can be
defined as inheriting all the attributes and behavior of one or more
"parent” frames. This can be casily applied to the implementation
of work elements by first defining the taxonomy of process steps.
The simplest way is to design a process tree, with the root being
"all process steps”. Beneath this could be classifications such as
"hole processes”, "surface processes”, etc. At yet lower levels, one
could have sub-categories such as "hole creation processes” and
"hole improvement processes”. Finally, the leaves of the process
tree would be the individual work elements, such as
“twist_drill_hole", "center_drill_hole" or "ream_hole". By con-
structing such a process taxonomy, one can take advantage of the
concepts of inheritance. The class of “hole creation processes”
inherits all the slots and methods of “hole processes”, and adds 0
them, slots and methods specific to hole creation operations. The
class of "drilling processes” inherits the slots and methods of "hole
creation processes”, plus whatever is important to drilling opera-
tions. In this way, a new process can be defined, inserted inte the
process taxonomy, and it immediately acquires a set of relevant
behavioral characteristics. Further, by classifying work elements in
this way, automatic process selection becomes easier to implement,
by traversing the tree, making a decision at each branch. An imple-
mentation of this concept is currently being integrated into the
AMRF process planning system, based upon a previously
developed tool called SIPS (Semi Intelligent Process Selection),
(13).

Communication

In keeping with the need for simplicity, the work element in
its communication role does not take advantage of any advanced
programming concepts. As shown in the example of Table 3, it is
in human readable, ASCII text form, called a "flat-file" or neutral
data exchange format, (14). It consists of nothing more than a
work element name and a collection of atwibute-value pairs, which
correspond to some of the slots of the planning work element. This
stripped-down version of work element appears in all communica-
tions of process plans between the process planning system, the
AMREF databases, and the various controllers, (14).

<< 1 >> DRILL_HOLE
( SYSTEM => VWS |
TYPE => PRIMITIVE ,
PLAN_ID => PP-VWS-72,
CHANGER_SLOT => 6,
CENTER_X =>4.50,
CENTER_Y =>225,
DEPTH => 0.5,
Z SURF => 0.0,
BLOCK_NAME => BLOCK1 ,
PREC_STEPS => (),
TIME => 0000:00:01:00 ) ;

Table 3. Communication version of work element "Drili_hole”



6. Hierarchical Systems

To support the hierarchical contro! scheme being used in the
AMRF, work elements have been defined for each level. Process
planning is also carried out in a hierarchical fashion, representing
the first step toward truly distributed; automated process planning.
This is a distinct change of approach from process planning
methods traditionally used, (15). The lowest ievel in the hierarchy,
called the Equipment level consists of industrial devices, such as
robots, automatic carts, and milling machines. The second level is
called the Workstation Ievel and consists of a physical grouping of
equipment level devices. For example, a milling machine, a lathe
and the robot used to service them might make up a workstation.
Each workstation has a controller which is implemented on a
microcomputer. The third level in the hierarchy is called the Cell
level. Essentially, a cell is the collection of workstations needed to
accomplish some production job. Activities within the cell are
coordinated by a cell controller. Levels still to be added include a
shop level which will coordinate and optimize the activities of the
cells, and a facility level which would be used to supervise several
shops, such as an assembly shop and a manufacturing shop. In
addition, the facility evel coordinates various "front office” support
functions. Current plans for the AMRF are for a manufacturing
shop, using metal removal for part production.

Task decomposition is fundamental to hierarchical control. A
high level goal is decomposed into sets of simpler goals for the
next lower level. To maintain flexibility in a programmable factory,
the method of decomposition should be defined by the data and not
built into the facility itself. To perform new production jobs, i.e.
producing new parts, one needs only to provide new process plans,
without any further programming, assuming the existing work ele-
ment definitions are sufficient.

“To provide the capability for flexible task decomposition,
each work element has an attribute called "Type" which determines
how it is handled by a controller, (see Table 1). "Type"” can have
one of three values:

1) Primitive

This is the simplest case, where a work element cormresponds

directly to an executable subroutine, as in the "drill_hole"

example.

Process

CELL-LEVEL

WORKSTATION-LEVEL

2) Complex

This instructs the controller to decompose the given command

into simpler commands to be executed at the next lower level

in the control hierarchy. It does this by retrieving the process

plan identified by the awribute "Plan_id", which contains the

decomposition of the given command. For a detailed discus-

sion of the decomposition and execution process, see (12).

3) Macro

Here the controller expands the given command into a set of

commands to be executed at the same level in the hierarchy.

Again, this is done by retrieving another process plan from

the distributed database.

As an example of how task decomposition would work, sup-
pose the Cell level of control received a "Process_Batch” com-

mand, (see Figure 1). This is a complex work element, with a

pointer to a process plan defining its decomposition. The Cell con-
troller would retrieve the referenced plan, which would contain a
set of work elements to be executed by workstation level controll-
ers. Examples would include commands for a milling workstation
to receive a lot of parts, receive some tools, and machine the lot of
parts. "Machine_lot" is also a complex work element, and upon
receiving the Machine_lot command, the milling workstation would
retrieve the referenced plan containing work elements to be exe-
cuted by equipment level conwollers. These would include work
elements such as “drili_hole” which was discussed earlier, which is
a primitive work element.

One of the main advantages of this form of hierarchical con-
trol is that it allows a truly modular, distributed implementation.
The parallelism which results greatly increases the execution speed
of a complex control system. This approach also supports distribut-
ing the process planning function. When a command is received, a
controller could either retrieve a previously generated plan stored in
a database, or it could call a local planning function, using the
current control state data to generate a new plan to be executed at
that particular level in the hierarchy. Ultimately, every controller in
the hierarchy could have a resident planning module which would
perform local task planning in real time, as commands are received.
Finally, a hierarchical congol implementation allows error handling
to be treated hierarchically also. An error detected at some low

Receive_Trs

Mill_Pocket!

EQUIPMENT-LEVEL

Figure 1. Example of command decomposition using hierarchical process plans
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level need not be reported to the highest level of control if a local
recovery technique is available. This avoids the situation of an
entire factory shutting down whenever the slightest problem occurs
anywhere in the control system. Rather, the error is reported only
to the first level of control able to handle the situation, allowing
other processes to continue uninterrupted.

7. Future Implementations of Work Elements

It seems inevitable that future automated process planning
systems will rely heavily on ideas from artificial intelligence
resecarch, With the exception of the SIPS system, the current
implementation of process planning in the AMRF uses traditional
Lisp and object-oriented programming techniques. Feawres such
as "autogen nodes” and "autogen rqmts" which automatically insert
process steps and requirements into process plans are the first steps
toward the development of intelligent planning modules which
would function automatically. The next version of work elements
may be implemented as intelligent modules with their own sets of
rules to determine how they will be decomposed into simpler com-
mands, (16). Thus, when a work element is considered for inclu-
sion in & process plan, it would be told to plan its own parameteri-
zation, using the current planning context. This scenario leads to
the possibility of truly distributed, real-time process planning,
rather than offline development and storage of plans for later exe-
cution. The separation between planning and execution will become
blurred as the modules acquire more local intelligence and real-
time interactive capability.

8. Conclusions

A scheme for representing process steps in an automated
manufacturing environment has been described. Called a work ele-
ment, this representation plays distinct roles in process planning,
plan communication and control system execution. By defining all
task decomposition in terms of work elements, programming new
production and support operations becomes simply a matter of
supplying new process plans, or adding new work elements to the
library. The structure of the work elements allows intelligent prob-
lem solving techniques to be easily implemented, such as "smart"
work elements: self-contained rule-based systems which dynami-
cally change their behavior depending on context. By designing the
fundamemtal knowledge representation scheme in such a generic
and flexible way, and by adopting standards based upon such
designs, it should be easier to maintain compatibility in the future
with existing systems of today.
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ABSTRACT. Several years ago, the Automated Manufacturing Research Facility
(AMRF) project wag established at the Gaithersburg site of the National
pureau of Standards (NBS). This facility is unique in several ways: first,
all manufacturing activities are under direct computer control; second, all
manufacturing data preparation systems and control systems are linked
through a complex data administration and communication system; third{ all
manufacturing operations are carried out by robots and machine tools with a
winimum of human intervention. This last constraint requires that all
manufacturing data be complete and unambiguous. It was necessary to develop
a process planning system which was capable of supporting the pgrticular
requirements and manufacturing capabilities of the AMRF. This paper
describes the research agenda of NBS and its cooperative efforts over the
past few years in the area of Autopated Process Planning. Results include:
the development of a neutral representation for process plans and a part
model; the development of an interactive planning system which supports all
controllers in the AMRF hierarchy:; the use of expert systems for process
and tool selection; automatic speed and feed calculation; and development
of a system for automatic part fixturing. The next phase of development
involves the introduction of distributed intelligent planning modules. By
following a systematic procedure of defining clear interface specifications
and establishing a framework for modular software development, progress is
being made on the complex problem of process planning in an automated
manufacturing environment.

INTRODUCTION. With the rising importance of of this system required major modifications to
national industrial competitiveness, the need their existing CAD and CAM facilities,
technological improvements in the significant outlay of human and financial
manufacturing arena is becoming acute. It is resources.
that the source of wmany of these

improvements will be the field of automation.
Manufacturing automation can speed product
turnaround, reduce the need for retooling, and
lead to a more efficient allocation of
resources. Automation can be effective for
small batch manufacturing and in spare parts
production. While this is a desirable goal,
many small shops cannot afford to fully
automate. By using clearly defined interfaces,
a shop can support both manual and automated
operations. Pursuing a research agenda for
fully automating a factory should yield useful
results for manual, semi~-automated and fully
autonmated facilities.

There are a number of cobstacles to the
implementation of a fully integrated automated
manufacturing facility. One major gap is the

lack of smooth information flow between
Computer Aided Design (CAD) systems and
Computer Aided Manufacturing (CAM) systems.

Traditionally, these two functions have been
treated as completely separate activities.
There is no feedback from CAM to CAD to
reflect the manufacturability of a particular
design. There are very few
commercial/production systems which actually
integrate CAD with CAM. An example of one
which does accomplish this for a limited part
family is the General Dynamics Advanced
Manufacturing System [McMahon87). After the
design of a wing-spar, the design is checked
for manufacturability. Potential problem areas
are identified to the designer who can then
make the appropriate modifications to improve
the manufacturing process. The implementation
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Extending these ideas to general part
families is a much more diffjicult task. A
brief example of the information flow
illustrates a number of problem areas. A
client requests some product to be
manufactured and provides a loose set of

requirements. This request is translated into
a local representation, usually a part
drawing. This local representation includes
some simple translation of functional
attributes into specific tolerance
information. The information is loosely
organized as notes or text on the part

drawing. This step can be done manually or
with the current technology of Computer Aided
Drafting. The step is complete when the client
and designer agree that the drawing adequately
represents the client's needs. The problen
with this approach is that the information is
not represented in a computer database form.
This implies that a human will have ¢to
interpret the notes sometime later in the
process, leading to ambiguities. More
importantly, this approach does not allow any
feedback to the designer as to the
manufacturability of the design.

The next step in the process is to bridge
the link to the CAM systems. This is called
process planning. Process planning transforms
the design information into some local process
specification structure used by the
manufacturing organization. This step
includes defining a group of machinable
features and their associated processing
steps, selecting target machine tools to be



used to process the part, generating tool and
fixturing orders, and any other information
needed to actually produce the part. The CAM
system then expands each process step into
more detailed instructions including robot or
machine tool N/C programs, tool offsets, etc.
It is at this point that important information
is generated which should be communicated back
to the designer. The important point is to
produce a product at minimum cost while
retaining the desired quality and
functionality.

Thus, the step called process planning is
the transformation of information from the CAD
representation to the CAM representation. The
transformation rules that humans apply are not
wvell understood even by those who use them.
Clearly this makes it difficult to encode
those rules in process planning systems. It is
only when these rules can be represented in
automatic systems that any feedback can be
given during the design process. To accomplish
this, a more powerful product representation
is needed. This representation must serve the
needs of the designer who is striving for
functionality, as well as the manufacturing
engineer who wants high quality at low cost.

Key research issues are the development
of a complete product definition that captures
the design and functional aspects of the part,
the understanding and development of the
transformation rules discussed above, and
finally the development of =models of the
constraining wmechanisms that affect those
transformation rules. The key standards issue
is the development of a standard process plan
representation. A standard representation
permits the independent development of
planning modules and reduces the integration
problem. The process planning project has
addressed a number of these issues internally
and in collaboration with other organizations.
Process planning is one part of the larger
AMRF project whose goal is to study the
problem of information flow in an automated
facility, and to develop ‘and test systenm
interfaces for this information flow.

OVERVIEW. This paper addresses the key
research efforts and issues supporting the
integration of automated process planning in
the Automated Manufacturing Research Facility
(AMRF) at the National Bureau of Standards.
Section 3 describes the AMRF facility in terms
of its goals, architecture and implementation.
Section 4 discusses the role of process
planning within the AMRF, and identifies some

of the underlying issues which must be
addressed before integrating a planning
system. Section 5 details the research
activities supporting process planning

conducted at, or in collaboration with, NBS.
Section 6 outlines a strategy for future work,
and Section 7 summarizes the paper.

TEE AMRF. The AMRF was established in 1981 to
serve as a testbed facility to support
research in wmeasurement techniques and
computer interface standards that are reguired
for automated machining of parts in small lot
sizes. One of the primary thrusts of the
project was to establish clear interface
specifications and modular structures to allow
plug-compatibility between systens. This
allows both a flexible manufacturing
environment and offers the capability of
incremental automation in existing facilities.
Results of this work are already centributing
to the formulation of standards for a generic
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factory model, 1low level robot interfaces,
process plan file structures, N/C machine tool
interfaces, comnunication standards, IGES
(Initial Graphical Exchange Specification) and
PDES (Product Definition Exchange
Specification). Currently, a PDES-like format
is used to communicate the part geometry and
functionality. As the formal definition of
PDES is developed, we intend to maintain
compatibility.

(1) The Role of NBS. The National Bureau of
Standards plays a unique role in manufacturing
automation. It serves as a common ground
where both academic and industrial research
issues can be explored. Industrial research
efforts often suffer from ¢the constraints
imposed upon them by a plant in full
production. The cost of taking down a
production 1line to experiment with new
automation concepts is prohibitive. This
results in a conservative approach ¢to
implementing new technologies in a plant.
Universities, while free to take great risks
with new ideas, rarely have the resources to
carry out large scale experiments involving
many industrial robots and controllers. This
is primarily due to the large investment in
capital equipment that is required.
Furthermore, it is difficult to remain aware
of the problems currently facing production
facilities without either working at such a
facility, or working with personnel from the
facility. The AMRF addresses many of these
problems. Experiments can be carried out on a
realistic scale without the loss of
production. The AMRF provides a forum where
industrial and academic researchers can work
and discuss their various perspectives.
Finally, by keeping information in the public
domain, results of work performed at NBS can

be made available to the entire manufacturing
community.

(2) AMRF Archjitecure. The AMRF is built around
the concept of hierarchical control, where
high 1level commands are decomposed into
seguences of simpler commands at the next
lower level in the hierarchy, which in turn
are decomposed at yet lower levels (Figure 1).
Well-defined protocols have been established
to allow command and status information to
flow up and down the hierarchy. The bulk of
data transfer (such as process plans and part
models) occurs laterally with a distributed
data administration system. A mechanism has
been implemented to allow any controller in
the AMRF to reguest or store information in a
generic way, regardless of which database is
being used to held that information. The
adoption of such an architecture avoids many
potential information bottlenecks. Further, by
adopting a hierarchical approach, the
complexity of a task is 1reduced to a
manageable level for any node in the
hierarchy. More details on the AMRF can be

found in (Simpsong2, Furlanis3, Hocken83,
Mcleang83, Mclean85, NanzettaB4].
PROCESS PLANNING JIN_ TH AMRF. The process

E
planning system in the AMRF was designed to
accomplish many goals. One major goal of the
planning effort was to establish a neutral
format for a process plan at any level in the
control hierarchy. This format had to be
simple enough to be easily parsed by the least
capable computers in the facility, vyet
flexible enough to convey complex process
plans containing multiple branches. A second
goal of the planning system was to serve as a
general programming tool for <the facility.
Since all workstation controllers in the



systematic wvay,
addressed,
scheme should be used for a process plan, both
within the planning system computer,
execution time
should an individual step within a process
plan be represented?
and software requirements for a process plan

SEARCH _TOPICS8 BUPPORTING
THE AMRF. A technology evaluation was carried
out early in the project to determine the
current state of the art of both production
and research process planning systens.
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Figure 1. The AMRF COntrol Hierarchy.

facility are designed to interpret and execute
process plans in the same format, the process
planning system can generate command sequences
for activities involving any combination of
devices on the factory floor.
system
hierarchy
workstation, and egquipment level (Figure 2).

The planning
levels of the
the cell,

supports all three
currently implemented:

Before these goals could be tackled in a
a number of issues had to be
for example: What representation
and at
on the factory floor? How
How should the hardware

stored? How is system integration and

interface specification to be accomplished?
How should the system handle command,
and database transactions, which are common to

status

systems in the facility? The research

program in process planning was formulated
with the above gquestions in mind. The approach
used to address these issues,
following section,
immediate
supporting and working in collaboration with
others
questions. In-house work therefore focussed on
representation
outside
approaches,
autcomatic fixturing, and other topics.

detailed in the
was to work on many of the
problens within NBS, while
on some of the more 1long ternm

interface issues, with
addressing expert system

feature manipulation,

and
projects
geometric
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The
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goal was to determine if the technology used
in these systems could be used in a facility
such as the AMRF, i.e. one with direct
computer control of all factory operations. It
was found that variant planning systems
suffered from severe drawbacks in generality
and extendability, and no system addressed all
the necessary issues. It was further decided
that a number of central items had to be
developed which simply did not yet aexist.
These included:

- A standard representation of process plans
based on programming language theory from
computer science.

- A standard representation of activities on
the shop floor. A representation was derived
based on knowledge representation techniques
from artificial intelligence.

= A product representation (rather than just
a part drawing) as output from a design
system. This representation is used to drive
the planning systen.

- A methodeology to allow the generation of
alternate functional views of the product
data as needed by various factory systems.

- A methodology relating these features to
the automatic generation of machine specific
code.

the research
elsewhere in
dealing with
The
to

This section describes
performed at NBS and
collaboration with <the AMRF,
isgues such as those outlined above.
interactive ©planning framework built
support the AMRF is also reported.
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(1) sessmen - d s
ing. Two key collaborators working with
NBS on the early phase of research into
computer aided process planning were Dr. Ted
Chang and Dr. Dana Nau. An NBS grant to Dr.
Richard Wysk at Virginia Polytechnic Institute
entitled “Advances in Computer-Aided Process
Planning", [Chang83] provided a useful survey
of existing planning systems and current
concepts. The outcome of this work served as
the basis of the book "An Introduction to
Automated Process Planning Systems"™ [Chang85].
At the same time, Dr. Nau was at NBS as a

guest researcher who became interested in the’

applicability of artificial intelligence to
process planning. The result of his work was
"Expert Computer Systems and Their
Applicability to Automated Manufacturing"
[Naug2]. Many of our current concepts on

process planning came out of this early
collaboration.

(2) A_Machine Tool Planner for Automated
Process Planning. A core task in the

transformation of design data into a process

plan is the task of ©process selection,
followed by machine code generation.
Typically, ¢this wmeans starting with the

specification of a design and determining the
processing step or steps needed to produce it.
In collaboration with the University of
Kansas, a graduate research project began at
NBS (Hummelg5] to investigate possible means
of perforring such a task automatically. One
of the outcomes c¢f the investigation was the
decomposition of the task into three parts.
The three parts or phases are called: feature

planning, operation ©planning and m®machine
planning. During each of these phases
"constraint posting” is used, constraint
posting consists of the formulation,

propagation and satisfaction of constraints
which describe the interactions Dbetween
various sub-problems. The constraints can, for
example, include causal relationships between
machining operations, or restrictions on
resources. The first step (feature planning)
takes a 1list of manufacturing features as
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Process planning data packets and corresponding control levels.

input. If no processing knowledge exists for a
given feature it is decomposed into a list of
simpler features, by means of pointers
embedded in the feature definition. This could
lead to the generation of precedence
constraints based on the sub-features
produced. The next step, operation planning,
involves the selection of machining operations
to produce each of the "elemental” features

jdentified in the ©previous phase. The
machining operation specifies various
parameters, such as feed rate and cutter
speed. Finally, the machine planning step

turns these operations into groups of APT-
like program segments.

The Kansas implementation uses a
production rule approach, modeled after
conventions of YAPS [Allen83], to represent
the rules needed in each of the planning sub-
tasks. The system is written in Franz Lisp
(tm) on a Sun Microsystems workstation,
specifically for a Bridgeport CNC vertical
m»illing machine. It has successfully produced
plans for a limited set of pocket and hole
making operations. Mr. Hummel has continued
this work at the Bendix Corporation. Concepts
such as meta-rules to control the search, and
an optimum search tree generator have been
implemented. A simple geometric reasoning
capability was also added to aid in the
feature decomposition problem. Much was
learned about the representation of machinable
features and the need for better geometric

reasoning capabilities and constraint
propagation methods.
(3) uto ed cess nd ool election.

Several years ago, an independent effort was
initiated at the University of Maryland by Dr.
pana Nau to investigate novel approaches to
the application of artificial intelligence to
process planning. This work was funded in part
by NBS. Dr. Nau developed a prototype
reasoning system in Prolog called SIPP (Semi
Intelligent Process Planner). This was soon
followed by a version implemented in Franz
Lisp , then re-coded in Zetalisp on a



symbolics Lisp machine. Dr. Nau rsalized that
a core task in the planning problem was that
of selecting a process, given an isoclated
manufacturing feature. The latast version
focused on this problem, and was named SIPS
(Semi Intelligent Process Selector). SIPS is a
frame-based reasoning system which was
designed around the concept of *hierarchical
knowledge clustering”, [Naug7]}.

There are several advantages to the SIPS
approach as compared to traditional production
rule systems. Firgt, conditions which are
common to several processes can be evaluated
in a parent node. Thus, only the conditions
which distinguish one process from another
"gibling" process need be evaluated by any of
the child nodes. The second major difference
is the concept of the cost of a process.
Idezlly, one would like a process selector to
generate a plan with the lowest cost. In
production rule systems, priorities can be
assigned to rules which rank them by cost, but
generally the priorities must be assigned
beforehand. In SIPS, the order of the search
is determined by the cost estimate for each
process, which is calculated during the
reasoning process. Thus, in situations where
the cost is feature dependent, SIPS offers a
convenient wvay to rank the candidate
processes. Finally, SIPS provides a
representation of both procedural and
declarative knowledge in a conceptual frame.

The SIPS system is currently integrated
into the interactive process planning
frameworkx of the AMRF., It can be invoked when
editing process plans at the equipment level
of the hierarchy. In operation, the process
engineer specifies the part to be machined in
terms of design or manufacturing features

meaningful to SIPS, ordered in a feature
graph. Each feature can then be passed to
SIPS, which will replace that feature in the
graph with the ©process, or seguence of
processes recommended to produce it. It is
then the task of the engineer to consolidate
the collection of processes needed for all the
features into an optimized sequence of
operations. The optimization of this last step
is currently being investigated. Enhancenments
to SIPS are currently being supported, through
cooperative research efforts between NBS, Dr.
Nau and researchers from Texas Instruments.
These efforts involve the enhancement of: 1)
the overall problem scolving paradigm, 2) the
inferencing strategies used, 3) the knowledge
representations employed, and 4) the domain
specific knowledge bases.

(4) omated urin - v
Kansas. The Departzent of Mechanical
Engineering &2t Kansas University has been
working with NBS under a grant for several
years on computer integrated manufacturing.
One research issue has been in the area of
automated part £fixturing, ([Carlyle8&). This
process is almost always performed by a
machinist because of the complex nature of the
problem. Researchers at Kansas believed a
properly designed modular fixturing systenm
could be assembled by a robot. By constraining
the range of solutions using modular fixtures,
progress could be wxmade in developing an
automated approach to part fixturing.

Work proceeded along three main branches:
to develop fixturing hardware to be controlled
by computer, a fixture planner, and a robot
planner. The fixturing hardware was designed
to be a baseplate type of assembly, with a
matrix of conical holes. Each hole accepts an
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sndstop or a clamp. Further, the clamp can
then be driven hydraulically under computer
contrel to open or close. To support the
hardware, a fixture planner was also
developed, called "Bassplatetool", ([Unger86].
This system graphically displays the baseplate
on a computer screen, and allows a process
engineer to specify the arrangement of stops
and clamps needed for a fixturing operation.
The system uses a two dimensional modeler for
the purposes of speed, unlike an earlier
version - which used a solid wmodeler. An
important feature of the system is the use of
2 separate database to store all facility-
depsndent information. This includes the
layout of the baseplate itself, the clamp
designs, the parts to be fixtured, the
locators used, the size of the locator holes,
etc. In this way, Baseplatetool can be quickly
adapted for use with any hole-based fixturing
system. The interface uses mouse input. Great
efforts were made to allow the engineer to
remain at the conceptual level when designing
a fixture. The third development was a robot
planner to allow robotic assembly of fixtures.
This system takes the fixture design generated
using Baseplatetool, and produces a process
plan to be used by a robot in the assembly of
the fixture components.

To integrate the work on automated
fixturing with the ongoing research at NBS, a
postprocessor was written <for the robot
planner. This produces a process plan in the
neutral AMRF format for the robotic assembly
of a fixture designed with the tool. The fact
that the fixturing hardware and software was
fully integrated with the AMRF within a week
of its arrival at NBS serves as a testament to
the power of machine independent interfaces.

(5) AMRF_Process Planning Syetem. The process
planning system consists of two primary
sections: a configuration tool and editing
tools, (Figure 3). The configuration tool is
used to specify the organization of the
equipment on the factory <floor. Thus, it
allows a user of the planning system to
construct a representation of the facility.
This representation contains the cells, the
machining and support workstations, and all of
the associated processing equipment.

An internal database is used to keep
track of the activities or functions that each
factory floor system can perform. The
database maintains the specification of an
activity, its associated constraints and other
information. These activities are called work
elements, [Ray86]. The work element concept is
derived from the idea of an operator in state
space. Thus, the application of a work element
results in a transition within a control
systen from one state to another. From the
perspective of the planning system, every
control module in the factory is treated the
same way, whether it controls equipment (such
as a machine tool contreller) or directs other
control modules (such as the «cell or
workstation controllers).

The second tool is the one used to
actually create, edit, or view process plans.
The plans created with this tool are in terms
of the entities and work elements defined in
the configuration tool. There is a network
interface to external databases where process
plans can be stored, and other information
such as part models and inventory data can be
accessed. once the user has selected a
process plan for editing, the information can
be displayed in two alternate forms. One
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display uses a text or form layocut, while the
second uses a graphical representation based
on the precedence information within the plan.
Both tools show the same information, but the
graphical tool provides easier viewing of the
overall plan while the textual display gives
the user more detailed information.

A major effort supporting the integration
of the planning system within the AMRF was the
development of a neutral process plan format.
This format is an ASCII based language
specification that is used throughout the
AMRF. A process plan is comprised of four
major sections:

1) Descriptive Header - contains static
index and summary data.

2) Parameters - 1lists all variables for
which real values must be substituted at
execution time,

3) Requirements List - identifies all
resources to be used during the execution of
the plan.

4) Procedure Specification - describes all
work elements, their precedence
relationships, their attributes and specific
value bindings.

Further details of the interactive process
planning system can be found in [Brown8é].

Another critical interface developed
within the AMRF is a part model or product
epecification format. This part model consists
of the part geometry and topology (based on a
boundary representation) and part
functionality, {Hopp87, Tug7j}. The
functionality section allows the specification
of datuns, datum reference frames and
tolerance information. In addition to this
information, a mechanism has been developed
for the specification of features. These
features can refer to any information within
the part model, 4including other features.
This format provides a mechanism which allows
multiple uses of the part model (such as
design, process planning, vision, and
inspection). An application system use the
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same underlying part specification, but
develops different views of this information.

In summary, the current planning systen
supports the neutral process plan format and
the part model format. Process plan procedures
are described in terms of work elements. The
system also has the capability to invoke an
external expert module to perform automated
process selection. The neutral process plans
are readable by all controllers within the
AMRF. Some of the equipment controllers then
execute predefined N/C programs. The vertical
machining workstation can dynamically generate
N/C code from a process plan and feature
description, [Kramer86).

BTRATEGY FOR PUTURE WORK. The major goal
during the first several years of the AMRF was
the design, construction and integration of
the present facility. That goal has been
reached and the system was demonstrated during
the public test run in December of 1986. The
next phase of research is to conduct
experiments using the current facility. One
important research area is the development of
distributed planning and control systems.

(1) Perspective of Current Work. The current
implementation of the process planning system
supports the architecture of the AMRF. This
systen is interactive, i.e. it requires human
decision making throughout the development of
a process plan. The system was designed to
allow modular extensions for intelligent
problem solving. The SIPS system has been
integrated and other expert modules can be
added in a straightforward manner. This is
possible because of the fundamental work
already done in designing the interfaces to
the AMRF.

One of the key outcomes of the work done
to date has been the rethinking of the role of
process planning in an automated factory.
Also, the importance of clear, well defined
interfaces cannot be over-emphasized. The
development of standard interfaces has been of
great help in speeding the software



development. A great deal of work.still needs
to be done to define interactions between

contrecl systems and planning systems and
refine the features used in the product
specification.

With a framework in place which supports
process planning in a fully automated
environment, work can now proceed on the
integration of artificial intelligence
technology into the system. By proceeding in
this way, we hope to keep our sfforts focused
on those areas most needing attention.

(2)

e + It is clear that expert systems
have a vital role to play in the manufacturing
environment. Many portions of the
manufacturing decision wmaking process are
based on heuristic rather than algorithmic
knowledge. Some Xkey areas &are ripe for
coneideration for future expert systems, such
as resource allocation, machine selection,
tool selection, etc. Tying all of these
systens together into a series of cooperative
expert systems still remains one ©f the most
important challenges. At the same time,
however, the need to better integrate
conventional programming tools with the
current system has become apparent. Many
relatively straightforward tasks still need to
be performed, such as data base interfaces and
speed/feed calculations. Tasks which do lend
thenselves to expert system solutions may
still be best accomplished with computer-
assisted tools which interact with a human
engineer. The computer-assisted tools will
probably have the largest immediate impact in
the manufacturing arena.

(3) 3 buted eal-Time n . A
distributed architecture offers the greatest
chance of success for the implementation of a
flexible planning system which can react in
real time to unforseen situations. The AMRF
hierarchical control architecture is a
convenient testbed in which to develop these
planning concepts. The hierarchical approach
means that & complex problem can be broken
down into a number of solvable sub-problems
[sacerdoti77}. By distributing the problem
among a number of processors, more
computational resources can be applied to the
preblem in parallel. Further, the modular
construction allows the system to be easily

modified to reflect changing factory
configurations. Figure 4 shows the allocation
Planning Levels
Level 1
Level 2
Level 3
Figure 4.

planning systen.
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of planning responsibility among a level
hierarchy. Figure 5 represents a hypothetical
scenario for Jinformation flow between two
levels within the hierarchy. Each node has
both a planning and controel module. What
follows is one example of how a distributed
planning and control system could function.

- The control level Z passes down a command
for a job to be performed.

- The A planner might already have a stored
template describing the appropriate course
of action, or it could develop a set of
tasks necessary to execute the command.

- Planner A asks the subordinate level
planners about the feasibility of sub-tasks
X,¥,2...

- Planner B responds with a "YES" and
returns a process plan that includes an
estimate of the time, cost and resources
required.

- Planner C supports a similar piece of
equipment and also returns “YES® with a
lower cost, but a much longer time estimate.

- This information is then used by the
planner or controller at level A to decide
wvhich plan would be best to use, and to
combine and optimize the various sub-tasks.

At a given time, module C could be a
better choice, but some ¢time later, if
delivery time became critical, module B would
be a better choice. Further, if module C
should break down during execution, the
planner could simply recommend module B as an
alternative. It is important that a planning
module first produce a rough estimate as to
whether it can handle a job, and then during
execution help provide error recovery. This
second step could be performed by continually
generating contingency plans, whenever the
module is otherwise idle.

There are of course numerous ways that a
cooperative planning and control architecture
could be designed, this represents just one

approach. It 4is our Dbelief that the
architecture of the AMRF, and the interfaces
that have been defined will allow the

implementation and testing of these ideas in a
convenient and robust fashion.

Planning Functions

GT-Cell Classitication
Machinable Feature Classification

Plan Optimization

Process Selection

Tool Selection

The decomposition of planning functions within a hierarchical
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(4) Portability. The current process planning
system was written in Zetalisp running on a
Symbolics computer system. We still feel Lisp
is the best environment for this type of
software because it is widely available, it
supports object oriented programming,
windowing facilities, flexible data typing and
an interactive programming environment. All of
these features greatly enhance the
productivity and flexibility of a software
developer. But issues have emerged concerning
the differing needs of software development
environments and application delivery systems.
Since we started the process planning system,
general interest in artificial intelligence
environments has greatly increased. The Lisp
environment on conventional computers has
improved significantly. Personal computers
have now become serious Lisp programming
tools.

We are beginning to define the
environment for the distributed planning
system. We are looking into a Lisp
environment which contains portable, public-
domain software. This software should include
object-oriented and windowing facilities. oOur
goal is to be able to implement a syster which
will run on a variety of host machines.

(5) Design by Features.

In traditional design, the functionality of a
part is never explicitly stated. The designer
transforms the functionality into geometry and
tolerance specifications. Subseguently, there
is no good way to provide feedback to the
designer on issues such as cost,
manufacturability and performance. An
important development which should radically
change this situation is the concept of design
by features. Since both designers and process
engineers conceptualize in terms of features,
a feature representation is a natural vehicle
for part description, [Dixon86, Hummel86]. We
believe that a relationship can be established
between design and manufacturing features.
Once this relationship is known, a mechanism
can be developed to provide the feedback to
the designer. Default parameters can also be
attached to these features, making the design
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Flow of planning information within a distributed hierarchical

and manufacturing tasks more consistent. In
this way, ¢the risk of over or under-
constraining a design is reduced. Finally,
these features can be related directly to
geometry to aid in the analysis of the
functionality of a part, such as strength,
heat transfer characteristics, etc. This
approach underscores the fact that
zanufacturing concerns are as important as
functicnality in order to produce economical,
high guality products. All aspects of a part,
including design, analysis, manufacturing and

inspection should be weighed against one
another.
CONCLUSIONS. The Automated Manufacturing

Research Facility at the National Bureau of
Standards is pursuing a systematic approach to
the development of process planning systems
for future automated factories. Early work
focused on representation issues. Results
include a neutral process plan format, a part
model format, and the concept of a work
element. Building on this framework, an
interactive planning system was designed and
implemented. The system provides planning
service for all AMRF control systems. As work
progressed, we learned more about how an
intelligent planning system should interact
with intelligent control systems. With the
integration of expert planning modules, we are
now ready to proceed toward the design of a
distributed, hierarchical planning systen.

The NBS Automated Manufacturing Research
Facility is partially supported by the Navy
Manufacturing Technology Program.

This is to certify that the article written
above was prepared by United States Government
employees as part of their official duties and
is therefore a work of the U.S. Government and
not subject to copyright.

References
Allen, E.M., "YAPS: Yet Another Production
System", VUniversity of Maryland TR-1146,
(1983).



Brown, P. and Mclean, C., "Interactive Process
Planning in the AMRF", Proceedings of Winter

1986 ASME Conference, Anaheim, California,
December 1986.
Chang, T-C., "Advances in Computer-Aided

Process Planning®, NBS Report NBS-GCR 83-441,
Gaithersburg, MD, (1§83).

Chang, T-C. and Wysk, R.A., "An Introduction
to Automated Process Planning Systems"”,
Prentice-Hall, Englewood Cliffs, NJ, (1985).

Carlyle, §.M., Barr, B.G., raddis, T.N. and
Umholtz, R., "Automated Fixturing System",
Internal Report, Computer Integrated
Manufacturing Laboratory, University of
Kansas, (1986). .

pixon, J.R., "Artificial 1Intelligence and
Design: A Mechanical Engineering View",
Proceedings of AAAI-86, Vol. 2, Philadelphia,
PA, 1986.

Furlani, c. et al., *The Automated
Manufacturing Research Facility ot the
National Bureau of Standards", Proc. of the
Summer Simulation Conference, Vancouver, BC,
Canada, (1983).

Hocken, R. and Nanzetta, P., "Research in
Automated Manufacturing at NBS", Manufacturing
Engineering, 91, #4, 68, (1983).

Hopp, T., "AMRF Database Report Format: Part
Model", NBS Internal Report, (in preparation),
{(1987).

Hummel, K., "An Expert Systems Based Machine
Tool Planner for a Distributed Automated

Process Planning System®, Masters Thesis,
University of Kansas, 1985.
Hummel, K. and Brooks, 8., "Symbolic

Representation of Manufacturing Features for
an Automated Process Planning System",
Proceedings of Winter 1586 ASME Conference,
Anaheim, California, December 1986.

Kramer, T. and Jun, J., "Software for An
Automated Machining Workstation", Proceedings
of the 3rd Biennial International Machine Tool
Technical Conference, September 1986.

McMahon, R.L. et al., *Manufacturing
Technology for an Advanced Machining Syster,
Sixth Semiannual Report", General Dynamics
Report MT-87-004, Fort Worth, TX, (1987).

Mclean, C., Mitchell, M. and Barkemeyer, E.,
"2A Computing Architecture for Small Batch
Manufacturing", IEEE Spectrum, 59, May 1983.

Mclean, C., "An Architecture for Intelligent
Manufacturing Control®", Proceedings of Summer
1985 ASME Conference, Boston, Massachusetts,
August 1985,

Nanzetta, P., "Update: NBS Research Facility
Addresses Problems in Setups for Small Batch
Manufacturing", Industrial Engineering, 68,
June (1%84).

Nau,‘D.s., "Expert Computer Systems and Their
Applicability to Automated Manufacturing®”, NBS

Report NBSIR 81-2466, Gaithersburg, MD,
(1882).
Nau, D.S. and Luce, ™., "Knowledge

Representation and Reasoning Techniques for
Process Planning: Extending SIPS tec do Tool

A-39

Selection", CIRP 1International Seminar on
Manufacturing Systems, University Park, PA,
1987.

Nau, D.S. "Hierarchical Abstraction for
Process Planning”", to appear in Second Intl.
Conference on Applications of Artificial
Intelligence in Engineering, Boston, MA, 1987.

Ray, 8., "A Knowledge Representation Scheme
for Processes in an Automated Manufacturing
Environment", Proceedings of the IEEE
International Conference on Systems, Man and
Cybernetics, Atlanta, Georgia, October 1986.

sacerdoti, E.D., ®"A Structure for Plans and
Behavior", Elsevier North-Holland, New York,
NY (1977)

Simpson, J.A., Hocken, R.J. and Albus, J.S.,
"The Automated Manufacturing Research Facility
of the National Bureau of Standards®, Journal
of Manufacturing Engineering, 1, 41, 18,
(1982). .

Tu, J. and Hopp, T., "“Part Geometry Data in
the AMRF", NBS Internal Report (in
preparation), (1987).

Unger, M., "BaseplateTool",
communication, (1987).

private



Hierarchical Abstraction of Problem-Solving Knowledge
Dana S. Nau
Computer Science Department and
Institute for Advanced Computer Studies
University of Maryland
and

Factory Automated Systems Division
Center for Manufacturing Engineering
National Bureau of Standards
Gaithersburg, MD 20899

Presented by:
Dana S. Nau

ASME Winter Annual Meeting, Anaheim, California
December, 1986

Bibliographic Reference:

Nau, D. S., "Hierarchical Abstraction of Problem-Solving
Knowledge", Bound volume of the 1986 ASME Winter Annual Meeting,
Anaheim, CA, December 1986

A-40



Hierarchical Abstraction of Problem-Solving Knowledge

Dana S. Nau”
Computer Science Dept., and Institute for Advanced Computer Studies
University of Maryland

February 3, 1987

Abstract

In most frame-based reasoning systems, the data manipulated by the system is represented
using frames, and the problem-solving knowledge used to manipulate this data consists of rules.
However, rules are not always the best way to represent problem-solving knowledge.

This paper describes an alternative way to represent problem-solving knowledge called hi-
erarchical knowledge clustering. Hierarchical knowledge clustering has been implemented in a
system called SIPS (Semi-Intelligent Process Selector), which plans what machining processes
to use in manufacturing metal parts. The paper describes the approach to knowledge represen-

tation and problem solving used in SIPS, and compares and contrasts this approach to other
work.

Primary topic: Knowledge Representation.
Other related topics: Engineering Problem Solving, Expert Systems.

Author’s address:
Dana S. Nau
Computer Science Dept.
University of Maryland
College Park, MD 20742
(301) 454-7932
dsn@mimsy.umd.edu

1 Introduction

In most frame-based reasoning systems, the information being manipulated is represented using
frames, and the problem-solving knowledge that manipulates the frames consists of rules. But for
some problem domains, rules may not be the most natural way to represent knowledge—and in
addition, rule-based systems can require large amounts of computation during problem solving if
the rule base is large.

This paper describes a way to address these problems using hierarchical knowledge clustering, a
technique for hierarchical abstraction of problem-solving information. For some problem domains,
this approach can be more natural and more efficient than rule-based problem solving.

*This work has been supported in part by the following sources: an NSF Presidential Young Investigator Award to
Dana Nau, NSF Grant NSFD CDR-85-00108 to the University of Maryland Systems Research Center, IBM Research,
General Motors Research Laboratories, Martin Marietta Laboratories, and the National Bureau of Standards.
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Ry: IF goal(h) & A(h) & B(h)
THEN assert twist-drilling(h)

Ry: IF goal(h) & A(h) & C(h) & D(h)
THEN remove goal(h); assert rough-boring(h); g = fi(h); assert goal(yg)

Rj: IF goal(h) & A(h) & C(h) & E(h)
THEN remove goal(h); assert finish-boring(h); g = f2(h); assert goal(yg)

Figure 1: A simple set of rules. A, B, C, D, and E are different sets of restrictions.

Hierarchical knowledge clustering has been implemented in a system called SIPS (Semi-Intelligent
Process Selector) [18]. SIPS was developed to produce plans of action for the creation of metal parts
using metal removal operations such as milling, drilling, reaming, etc. Each of these operations or
machining processes creates a feature on the metal part, such as a hole, slot, pocket, etc. Given
the specification for the final part, the task of deciding what sequence or sequences of machining
processes to use in creating the part is known as process selection. To do process selection, SIPS
starts with the specification of the part to be produced, and reasons about the intrinsic capabilities
of each machining process.

SIPS has recently been interfaced to a solid modeling system at General Motors Research
Laboratories. This interface allows the user to create part descriptions graphically, and have SIPS
select suitable machining processes to create these parts. Also, SIPS has recently been extended to
do not just process selection, but also tool selection and the determination of process parameters.
The latest version of SIPS is being integrated into the Automated Manufacturing Research Facility
(AMRF) project [2] at the National Bureau of Standards.

This paper gives an overview of SIPS. Section 2 explains the motivation for the hierarchical
knowledge clustering technique, and Section 3 explains how this technique has been implemented
in SIPS. Section 4 discusses the relationships between SIPS and work by others, and Section 5
contains concluding remarks.

2 Motivation T

In most knowledge-based problem-solving systems, problem-solving knowledge consists of rules of
the form “IF conditions THEN action”. Even in frame systems, where the data (and possibly the
knowledge base) are represented using frames, the knowledge base still usually consists of rules.
However, there are several problems with using this approach for process selection.

Consider the problem of creating a hole h. There are many machining processes capable of
creating holes, but to keep the example simple, suppose we consider only three processes: twist
drilling, rough boring, and finish boring. Each of these processes has different restrictions how
good a hole it can produce. If the restrictions for twist drilling are satisfied, twist drilling can
produce h without requiring that anything else be done. However, rough boring (if its restrictions
are satisfied) produces A by modifying a hole g which must already be present. Finish boring is
similar to rough boring, except that it can satisfy stricter machining tolerances for h. One way to
describe these processes would be rules similar to those shown in Figure 1.

One problem with these rules is the repititiousness of their preconditions: each rule tells what
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Ry4: IF goal(h) & A(h)
THEN remove goal(h); assert hole-process(h)

Rs: IF hole-process(h) & B(h)
THEN remove goal(h); assert twist-drilling(h)

Rs: IF hole-process(h) & C(h)
THEN remove goal(h); assert hole-improve-process(h)

R7: IF hole-improve-process(h) & D(h)
THEN remove goal(h); assert rough-boring(h); g = fi(h); assert goal(g)

Rs: IF hole-improve-process(h) & E(h)
THEN remove goal(h); assert finish-boring(h); g = fo(h); assert goal(yg)

Figure 2: A better set of rules.

distinguishes some machining process from every other machining process in the entire knowledge
base. It would be more natural and (depending on the control strategy) probably more efficient to
set up context in which hole processes are the only processes being considered, and then describe
each hole process only in terms of what distinguishes it from the other hole processes. This approach
would lead to rules such as those shown in Figure 2.

Another problem is how to select the appropriate rule when more than one rule is applicable.
For example, suppose both twist-drilling and hole-improve-process are capable of creating
h. Since twist-drilling is less costly, one would want to use Rs instead of Rg, but the rules
include no way to assure that this will happen.

This problem could be handled if one could attach priorities to the rules corresponding to the
costs of the machining processes—and rule-based systems sometimes include ways to do this. But
in this case, it is not so easy: the priorities are not available beforehand to put into the rules,
but instead are functions of the various machining processes. For example, the cost of a hole
improvement process should be computed as the minimum of the cost of rough boring and finis
boring. :

One way to handle this is to notice that the rules in Figure 2 correspond to the tree shown
in Figure 3. By representing each node in the tree as a frame, one could represent the process
costs as slots whose values could be computed as functions of other frames. Additional slots could
represent various other relevant properties of the processes—feed rates, cutting speeds, location of
the machine in the factory, etc.

If we represent the machining processes in this fashion, the next question is how to represent
and invoke the IF and THEN parts of the rules. Although message passing is often used in frame
systems, it would not work well here, because it would still a process even if a less costly process
were applicable. In order to make sure that only the least-cost frames get activated, a global control
strategy is needed to supervise the activation of the frames. The combination of the hierarchical
representation with such a control strategy is called hierarchical knowledge clustering.
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hole-process
A(h)

twist-drilling hole~improve-process
B(h) C(h)

rough-boring <finish-boring
D(h) E(h)
subgoal: fi(h) subgoal: fo(h)

Figure 3: A tree corresponding to the rules in Figure 2.

3 Implementation

Hierarchical knowledge clustering has been implemented in a system called SIPS. SIPS includes
a frame system which can be used to represent both static knowledge (e.g., representations of
three-dimensional objects) and problem-solving knowledge (as discussed in Section 2).

Figure 4 shows a frame structure corresponding to the tree shown in Figure 3. This frame
structure is much simpler than the knowledge base actually used in SIPS, but it illustrates how
SIPS represents problem-solving knowledge.

The relevant slot in the hole-process frame specifies that a hole process is relevant for making
a hole. This information is used to start SIPS’s search when SIPS is told to find plan the creation
of a hole.

The cost slot is intended to be a lower bound on the cost of performing a process. In the
case of hole-process, this lower bound is computed by an attached procedure which takes the
minimum of the cost slots of the child frames. hole-improve-process inherits this procedure
from hole-process, so its cost will also be computed as the minimum of the costs of its children.
Since the twist-drilling, rough-boring, and finish-boring frames represent single kinds of
machining processes rather than classes of machining processes, the relative costs of these processes
are put into their cost slots.

Similarly, precost is intended to be a lower bound on the cost of any other processes which
might be required before doing the hole process. For hole-process, this bound is computed by
an attached procedure which computes the minimum of the precost slots of the children. Since
twist-drillingdoes not need to have any other processes occur before it, its precost slot contains
the value 0. But a hole improvement process takes an existing hole g and transforms it into the
desired hole—and since g must be created by some kind of hole process, the cost of creating g will be
at least the minimum cost for a hole process. Thus, the precost slot for hole-improve-process is
the value of hole-process’s cost slot. Both rough-boring and finish-boring inherit this value
from hole-improve-process.

A process’s restrictions slot tells what restrictions must be satisfied in order for that process
to be a feasible way to achieve the desired goal. For hole-process, the restrictions are mainly
geometric ones—for example, restrictions on the angle between the hole and the surface in which
it is to be created. For the other processes in Figure 4, the restrictions are mainly restrictions on
the hole dimensions and on the best machining tolerances achievable by the process (parallelism,
roundness, true position, etc.).
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hole-process

relevant: hole
cost: compute min of children
precost: compute min of children

restrictions: A(h)

/\

twist~-drilling hole-improve-process

cost: 1 (cost): compute min of children
precost: 0 precost: cost(hole-process)
restrictions: B(h) cannot~precede: zxough-boring

actions: signal success restrictions: C(h)

Tough-boring finish-boring
cost: 3 cost: 4
(precost): cost(hole-process) (precost): c?s‘l‘:(hole-l?rocess)
s cannot-precede: finish-boring
restrictions: D(h) L
actions: create subgoal f1(h) restrictions: E(h)
actions: create subgoal fo(h) -

Figure 4: A frame structure corresponding to the tree shown in Figure 3. Parentheses around a
slot name indicate that the slot is inherited from the parent frame.
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The cannot-precede slots for hole-improve-process and finish-boring state that in no
sensible process plan will these processes be followed by certain other machining processes. This
slot is not really necessary for correct operation of SIPS, but it makes SIPS more efficient by
decreasing the size of the search space.

SIPS does problem solving by searching backwards from the ultimate goal to be achieved.
Therefore, the actions slot for a machining process must specify what SIPS needs to do before it
can perform the machining process. For twist-drilling, nothing need be done beforehand—so
twist-drilling’s actions slot states that twist drilling succeeds immediately. However, rough
boring and finish boring produce a better hole from an existing hole—and SIPS needs to figure out
how to make this hole. The actions statements for rough-boring and finish-boring set up the
creation of this hole as a subgoal for SIPS.

Figure 5 shows part of the state space which can be generated from the set of frames shown in
Figure 4. Each state in the state space is a (partial) plan for creating a hole h1. Whether or not
this plan is feasible will depend on the nature of h1—except that the plans marked “infeasible” in
Figure 5 can never be feasible, because of the cannot-precede slots in the knowledge base. When
a plan is infeasible, its children will never be generated.

SIPS searches the state space using an adaptation of Branch and Bound. The lower bound
function LB which guides this search is computed from the cost and precost slots of the machining
processes. For example, for the plan labeled P in Figure 4,

LP(P) = precost(hole-process) + cost(hole-process) + cost(finish-boring).

So that SIPS will avoid generating expensive plans when cheaper ones can be used, SIPS’s search
strategy is best-first.! Thus, the first solution found by SIPS is guaranteed to be the least costly
one.

4 Relation to Other Work

This section discusses the relationships between SIPS and other work in three areas: automated |
process planning, planning with abstraction, and computational approaches for knowledge-based
systems.

4.1 Process Planning

A number of computer systems exist which provide partial automation of process planning. In
most existing systems, process planning is done by retrieving from a data base a process plan for
another part similar to the desired part, and modifying this plan by hand to produce a process
plan for the desired part. Examples of such systems are CAPP [12] and MIPLAN [24]. For more
detailed descriptions of such systems, the reader is referred to [4] and [19].

Devising a complete process plan automatically using a part’s specifications (e.g., a full tech-
nical drawing) is a very difficult problem. There are several systems which attempt to produce a
process plan for the exact part desired—but most such systems are experimental and have limited
capabilities. A few of the better-known systems include CPPP (8], APPAS {26], CADCAM (3,6],
TIPPS [5], GARI [7] and TOM [13], and SIPP [16,17] (a predecessor to SIPS, implemented in Pro-
log). Except for SIPP, these systems use problem-solving approaches rather different from what is
used in SIPS.

1Thus, SIPS’s search procedure may also be thought of as an adaptation of A* [20], with LB as the heuristic
function.
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hl

hole-process

/\

twist-drilling hole-improve-process
hl hl
rough-boring finish-boring
success hl hl
create h2 create h3
rough-boring finish-boring
' hl h1
/ Plan P:
hole-process hole-process
h2 h3
rough-boring finish-boring
hl hl
twist-drilling hole-improve-process twist-drilling hole-improve-process
h2 h2 h3 h3
rough-boring rough-boring finish-boring finish-boring
h2 hl hi hi
infeasible /\
rough-boring| |finish-boring
h3 h3
finish-boring finish-boring
success success h1 h1
snfeasible

Figure 5: Part of a search space for creating a hole hl. Plan P is labeled for reference in the text.
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4.2 Planning with Abstraction

Hierarchical knowledge clustering can be viewed as a way to do planning based on abstraction. For
example, the hole-process frame in Figure 4 represents an abstract machining process which has
two possible instantiations: twist-drilling and hole-improve-process.

Several types of abstraction have been explored in the literature on planning. One type of
abstraction is that used in NOAH [23], in which an action A is an abstraction of actions A; and A,
if A; and A, are each steps in the performance of A. This is rather different from the abstraction
used in SIPS: in SIPS, A is an abstraction of actions A; and A; if A; and A; are alternate
instantiations of A.

Another type of abstraction is that used in ABSTRIPS [20], in which a complete plan is con-
structed ignoring some of the preconditions of each action and the plan is then modified to meet
the preconditions which were ignored. This type of abstraction is related to that used in SIPS in
the following sense: an instantiation of an action A is an action A; which must satisfy the pre-
conditions of A and also some additional preconditions, and both SIPS and ABSTRIPS refine a
plan containing A by checking those preconditions of A; which differ from the preconditions of A.
However, there are several important differences:

1. SIPS completely instantiates the last action in a plan before considering what actions should
precede this action, whereas ABSTRIPS generates a complete (but possibly incorrect) plan
and then tries to fix it up.

2. In SIPS, an abstract action has several possible alternate instantiations, but in ABSTRIPS,
only one instantiation is possible. Thus in ABSTRIPS, the notion of considering alternate
instantiations of an action and choosing the one of least estimated cost does not make sense.

Another type of abstraction which is quite close to that used in SIPS is proposed by Tenenberg
[22]. This approach is similar to SIPS in the sense that each abstract action may have more than
one possible instantiation. It is potentially more general than that used in SIPS, in the sense
that the effects of actions are represented hierarchically, as well as their preconditions—but so far,
Tenenberg’s approach approach has not yet been implemented.

Several systems for diagnostic problem-solving make use of certain kinds of taxonomic hierar-
chies. Both MDX [14] and Centaur [10] use taxonomies of various diagnostic problems, in which
knowledge about each class of problems is located at the node in the hierarchy which represents that
class. These approaches yield some of the same benefits as SIPS in terms of representational clarity
and efficiency of problem-solving. However, the details of how they represent and manipulate their
knowledge are rather different from what SIPS does.

4.3 Computational Approaches

It is well known that rule-based systems having large rule bases can require substantial computa-
tional overhead. Suppose a rule-based system is trying to solve a problem in some problem domain
D. Each time the system applies a rule, this changes the system’s current state S—and in order
to decide what rule to apply next, the system must determine which rules match S. If the system
searched through its entire set of rules to find the ones matching S, the computational overhead
would be tremendous.

Several approaches have been tried for alleviating this problem. One approach, which is used
in KEE [9], is to provide facilities whereby the user can divide a set of rules R into smaller subsets
Ry, Ry, ..., Ry, such that each subset is relevant for a different problem domain. Given a problem
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to solve, the system starts out by determining which problem domain the problem is in. It then
selects the rule set R; for that domain, and then uses R; exclusively from that point on, ignoring
all the other rules. Since R; is smaller than R, the problems with efficiency are lessened.

Hierarchical knowledge clustering can be thought of as as an extension of the above approach.
It provides a way to tell, directly from the current state S, that only some subset Rgs of the rules
in R is relevant to 5.2 Thus, all rules not in Rg can temporarily be ignored. Since Rg is normally
quite small, this provides improved efficiency.

Another approach to reducing the computational overhead of computing rule matches is the
rete match algorithm used in OPS5 [11] and YAPS [1]. This algorithm provides a way to store
partial rule matches in a network so that the system can determine whether a rule matches the
current state without having to re-evaluate all of the rule’s preconditions each time the current
state changes. This makes the complexity of computing rule matches depend not on the size of R,
but instead on the size of the set Ps of rules whose preconditions partially match S. If Ps is small,
then the rete match procedure is efficient, but if Ps is large, the elaboration of partial matches may
incur significant overhead.

Hierarchical knowledge clustering can be thought of as a way to control the elaboration of
partial matches, by distributing the preconditions of a rule throughout the levels of a hierarchical
structure and elaborating a partial match only if it looks promising. Thus, the approach used in
SIPS may have potential for increasing the efficiency of the rete match procedure.

5 Concluding Remarks

SIPS currently runs in Franz Lisp on a Sun, and in Zeta Lisp on a Symbolics Lisp Machine and
a TI Explorer. It can either read prepared data from a file, or (if some of this data is omitted)
run interactively, asking the user for any needed information. Various user features have been
implemented in SIPS. For example, if SIPS produces a plan for producing some feature, the user
can later tell SIPS to go back and find other alternative plans for producing this feature.

For the process planning problem domain, hierarchical knowledge clustering appears to be more
natural to use than a “flat” set of production rules. In the experience of a manufacturing engineer
who has worked on SIPS’s knowledge base, SIPS’s style of knowledge representation has been easy
to understand and use. Trying to represent SIPS’s knowledge base as a rule-based system would
make the rules very cumbersome.

A more sophisticated interface for SIPS is currently being developed. SIPS has been interfaced
to a solid modeling system at General Motors Research Laboratories, so that the user can build
up an object to be created by giving graphical specifications of its machinable features, and have
SIPS select sequences of machining processes capable of creating those features. Further work on
solid modeling for SIPS is currently underway [25].

More recently, SIPS has been extended to do not just process selection, but also tool selection
and the determination of process parameters. This has been done by giving SIPS a knowledge base
for tooling in addition to its knowledge base for process selection. Thus, the current knowledge
base for SIPS consists of three hierarchies: a taxonomy of machinable features, a taxonomy of
machining processes, and a taxonomy of cutting tools. Once SIPS finds a successful sequence of
machining processes for a given machinable surface, it uses its knowledge about the characteristics
of each cutting tool to decide, for each machiring process, what cutting tool to use and what

%In particular, finding Rs corresponds either to retrieving the children of some frame or (when SIPS creates a
subgoal) retrieving all frames relevant to the creation of a feature. In each case, only a few of SIPS’s process frames
are relevant—and which frames are relevant is determined easily from the frame system.
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process parameters to use. The latest version of SIPS is being integrated into the Automated
Manufacturing Research Facility (AMRF) project [2] at the National Bureau of Standards.
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Appendix B BACKUS-NAUR SPECIFICATION Process Planning

BRIEF INTRODUCTION TO BACKUS-NAUR (BNF) NOTATION:
The following are symbols of BNF, and not of the language itself:

1. <xx> Denotes a non-terminal symbol whose name is "xx". A
"non-terminal" is a symbol of the BNF notation which can be
further decomposed into a set of non-terminals and/or terminals.
Eventually, all symbols decompose into terminals. A "terminal" is
a symbol or character of the object language. The "object
language" consists of all symbols and characters that will appear
in the actual file.

2. ::= The non-terminal to the left of this symbol is composed
of all those elements that are to the right of this symbol
(expresses decomposition).

3. <xx> <yy> This expresses concatenation of two non-terminals
("and"). The concatenation applies to whatever these
non-terminals decompose to as well.

4. | This means "or" ( any one of the specified elements may be
chosen to place in this position ).

5. { } Means zeroc or more occurrences of. For example,

{<header line>} means the same as <header_line_ 1> . .
<header_line_n> .

6. [ ] Means optional.

7. XX . . YY This notation is for numeric or alphabetic ranges.

8. <???> Means as yet undefined.

Simple example of BNF:

<a> ::= <b> <c> !

<b> ::= hi

<c> ::= there
becomes

hi there !
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Conmments:

1. Keywords, values, and parameters are to be 19 characters or
less.

2. All letters are uppercase.

3. Any terminal (i.e. punctuation mark, integer) may be preceded
and followed by whitespace (defined below in BNF) unless otherwise
specified.

4. The notation "xxH" in the following BNF represents the
hexadecimal number specifying an ascii character. For instance,
2H means SPACE. '

5. Any element may be omitted by delineating with the proper
punctuation. For instance, in order to specify no precedence
steps, two consecutive semi-colons may be used.
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THE PROCESS PLAN SPECIFICATION IN BNF

<pp_file> ::= -~PROCESS_PLAN--
<parameters_section>
<header_section>
<rgmts_list>
<procedure_specification>
-=—-END_PROCESS_PLAN--

<header_section> ::= --HEADER SECTION--
{<header_line>)}
--END_HEADER SECTION

<headef_line> ::= <header_elem name> = <value> .
<header_elem name> ::= <keyword>
<parameters_section> ::= --PARAMETERS SECTION--

{<parm_line>}
--END_PARAMETERS SECTION--

<parm_line> ::= <parm_name> ; <parm type> ;

;parm_range> ¢ <parm_default> .
<parm_name> ::= $S<keyword>

<parm_type> ::= <??7?>

<parm_range> ::= <value> , <value>

<parm_default> ::= <???>
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<rgmts_list> ::= --REQUIREMENTS_ SECTION--

{<rgmt_line>)}
=-END_REQUIREMENTS SECTION

<rgmt_line> ::= <rgmt_number> ; <rgmt_identifier> ;

<rgmt_type> ; <rgmt_description> ;
<rgmt_quantity> ; <parent rqmts> .

<rgmt_number> ::= <integer>

<rgmt_identifier> ::= <keyword>

<rgmt_type> ::= <keyword>

<rgmt_description> ::= <???>

<rgmt_quantity> ::= <integer>

<parent_rgmts> ::= <rgmt_line num list>

<rgmt_line num list> ::= (<keyword> ,} <keyword>

<procedure_specification> ::= --PROCEDURE_SECTION

{<procs_line>}
-=-END_PROCEDURE_SECTION--

<procs_line> ::= <step number> ; <work descr> ;

<prec_steps> ; <duration> .

<step number> ::= <integer>

<work_descr> ::= <work_ element_name>

{, <keyword> = <value>}

<work_element_name> ::= <keyword>
<prec_steps> ::= (<integer> ,} <integer>
<duration> ::= " <days> : <hrs> : <min> : <sec> "

(No whitespace allowed between characters)

<days>
(No whitespace allowed between digits)

<hrs>

<min>

::= <digit> <digit> <digit> <digit>

oo . . 23

00 . . 59
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<keyword> ::= <keyword prefix> (<uppercase letter> | <digit> |
$ I ¥ _ I -1 %1 &+ V] @] *)
(No whitespace allowed between characters)

<keyword prefix> ::= <uppercase_letter> | $ | # | @
<value> ::= <number> | <keyword> | <string>
<string> ::= " {<ascii_printable char>} "

<whitespace> ::= { CR | LF | SPACE | TAB | FORMFEED )}
<upper_case_letter> ::= A . . Z ( 41H . . 5AH )
<digit> =0 . . 9 ( 30H . . 39H )

<integer> ::= <digit> | <digit> <digit>
(No whitespace allowed between digits)

<ascii_printable char> ::= SPACE . . ~ | TAB | FORM-FEED |CR | VT
| LINE-FEED ( 20H . . 7EH | 12H | 10H | 9H | OBH | OAH )
(Note: "™ , or 22H, must be preceded by \ , or 5CH and also
\, or 5CH, must be preceded by \ , or 5CH)
<file keyword> ::= --PROCESS_PLAN-- | --END_PROCESS PLAN--
<section keyword> ::= --PARAMETERS SECTION-- |

--END_PARAMETERS_SECTION-- |
--HEADER_SECTION-~ |
~--END_HEADER_SECTION-- |
~-REQUIREMENTS SECTION-- |
~=END_REQUIREMENTS SECTION=-- |
-=PROCEDURE_SECTION=-- |
~-END_PROCEDURE_SECTION--
<punctuation_mark> ::= = | .| 1,

H
( 3BH | 3DH | 2EH | 3AH | 2CH )

<number> ::= <integer> | <integer>.<integer> |
<integer>[.<integer>]E<exponent>
(No whitespace allowed between characters)

c-3
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(+]<integer> | -<integer>

<exponent> ::=
(No whitespace allowed between characters)

c-4
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--PROCESS_PLAN--

--HEADER_SECTION--

PLAN-ID ¢= PP-CELL~-1;
PLAN-VERSION = 1; ‘

PLAN-TYPE ¢= ROUTING-SLIP;
PLAN-NAME ¢= "FILTER-HOUSING";

PROCESS—~ENGINEER "Peter Brown";

PART-NUMBER := 31;

GT-CODE := 0134673689;

ENG-DRAW-# ¢= 123987;

ENG-REVISION = 23
--END_HEADER_SECTION--
—~-PARAMETERS SECTION--

$$TRAYO001 ¢ PART-TRAY;

$S$STRAY002 ¢ TOOL-TRAY;

$SLOTOO01 ¢ LOT;

$$TOOL-SET001 : TOOL-SET;

--END_PARAMETERS_ SECTION--

~-REQUIREMENTS_ SECTION-~

<<1>> PROCESS-PLAN

( PLAN-ID => PP-MHS-1,
PLAN-VERSION => 1,
PLAN-TYPE - => OPERATION-SHEET,
PLAN~-NAME => "FILTER-HOUSING" );

<<2>> PROCESS~PLAN

( PLAN-ID => PP-MHS-2,
PLAN-VERSION => 1,
PLAN-TYPE => OPERATION~SHEET,
PLAN-NAME => "FILTER-HOUSING" );

<<3>> PROCESS-PLAN
( PLAN-ID => PP-MHS-3,
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PLAN-VERSION
PLAN-TYPE
PLAN-NAME

PROCESS~PLAN
( PLAN-ID
PLAN-VERSION
PLAN-TYPE
PLAN-NAME

<<4>>

<<5>> PROCESS-PLAN
( PLAN-ID
PLAN-VERSION
PLAN-TYPE
PLAN-NAME
<<6>> PROCESS-PLAN
( PLAN-ID
PLAN-VERSION
PLAN-TYPE
PLAN-NAME
<<7>> PROCESS~-PLAN
( PLAN-ID
PLAN-VERSION
PLAN-TYPE
PLAN-NAME
<<8>> WORKSTATION
( WORSTATION-ID
<<9>> WORKSTATION
( WORKSTATION-ID
<<10>> TRAY
( TRAY-TYPE
TRAY-ID

TRAY
( TRAY-TYPE
TRAY-ID

<<11>>

~=-END REQUIREMENTS_SECTION--

==PROCEDURE_SECTION--

DELIVER-TRAY
( ORIGIN
DESTINATION

<<1>>

=>
=>
=>

=>

=>
=>

=>

=>
=>
=>
=>

=>

Process Planning

1,
OPERATION-SHEET,
"FILTER~HOUSING" );

PP~MHS-4,

1,

OPERATION-SHEET,
"FILTER-HOUSING" );

PP-VWS~-1,

1,

OPERATION-SHEET,
"FILTER-HOUSING" );

PP-VWS-2,

1,

OPERATION-SHEET,
"FILTER-HOUSING" );

PP-VWS-3,
1,

OPERATION-SHEET,
"FILTER~-HOUSING" );

VWS ) ;

MHS )

SECTOR-4,
$$TRAY001 ) ;

SECTOR-4,
$STRAY002 );

MHS,
VWS,
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<<2>>

<<3>>

<<4>>

<<5>>

<<6>>

TRAY-TYPE
TRAY-ID
SYSTEM
TYPE
PLAN-ID
PREC-STEPS
TIME

DELIVER-TRAY
( ORIGIN

DESTINATION
TRAY-TYPE
TRAY=-ID
SYSTEM
TYPE
PLAN=-ID

PREC-STEPS

TIME

RECEIVE-TRAY
( TRAY-TYPE
TRAY-ID
SYSTEM
TYPE
PREC-STEPS
TIME

RECEIVE-TRAY
( TRAY-TYPE
TRAY-ID
SYSTEM
TYPE
PREC-STEPS
TIME

SETUP-AREA
( AREA-ID
ITEMS
SYSTEM
TYPE
PLAN-ID
PREC-STEPS
TIME

MACHINE-LOT
( LOT-ID
LOT-TYPE

nnnuann
VVVVVYV

Process

SECTOR~4,
$$STRAYO0O01,

MHS,

COMPLEX,
PP-MHS~1,

oF
0000:00:00:30 )

MHS,
VWS,

SECTOR-4,
S$STRAY002,

MHS,

COMPLEX,
PP-MHS-2,

(),
0000:00:00:30 );

SECTOR-4,
$$TRAY001,

VWS,

PRIMITIVE,

(1),
0000:00:00:30 );

SECTOR-4,
$$TRAY002,

VWS,

PRIMITIVE,

(2),
0000:00:00:30 )

TOOL-CHANGER,
$$TOOL-SET001,
VWS,

COMPLEX,
PP-VWS-1,

(4),
0000:00:02:45 ) ;

$SLOTOO01,
FILTER~HOUSING,

Planning
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<<7>>

<<8>>

<<9>>

QUANTITY
TRAY-ID
TOOL-SET
SYSTEM
TYPE
PLAN-ID
PREC-STEPS
TIME

TAKEDOWN-AREA

( AREA-ID
ITEMS
SYSTEM
TYPE
PLAN-ID
PREC-STEPS
TIME

SHIP-TRAY

( TRAY-TYPE
TRAY-ID
SYSTEM
TYPE
PREC-STEPS
TIME

SHIP-TRAY

( TRAY-TYPE
TRAY-ID
SYSTEM
TYPE
PREC-STEPS
TIME

<<10>> DELIVER-TRAY

(

ORIGIN

DESTINATION

TRAY-TYPE
TRAY-ID
SYSTEM
TYPE
PLAN-ID
PREC~-STEPS
TIME

<<11>> DELIVER-TRAY

( ORIGIN

DESTINATION

TRAY-TYPE

iuonnuuunn
VVVVVVVYVY

Process Planning

4,
$$STRAYO001,
$$TOOL-SETO001,
VWS,

COMPLEX,
PP-VWS-2,

(3,5),
0000:00:28:15 );

TOOL-CHANGER,
$$TOOL-SET-1
VWS,

COMPLEX,
PP-VWS-3,

(6),
0000:00:02:30 )

SECTOR-4,
$$STRAYO0O01,

VWS,

PRIMITIVE,

(6),
0000:00:00:30 );

SECTOR-4,
$STRAY002,

VWS,

PRIMITIVE,

(7),
0000:00:00:30 )

VWS,
MHS,

SECTOR-4,
$$TRAY001,

MHS,

COMPLEX,
PP-MHS-3,

(8),
0000:00:00:30 );

MHS,
SECTOR-4,
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TRAY-ID ©  => $$TRAY002,
SYSTEM => MHS,

TYPE => COMPLEX,

PLAN-ID => PP-MHS-4,
PREC-STEPS => (9),

TIME => 0000:00:00:30 );

—-END_PROCEDURE_SECTION~--

--END_PROCESS_PLAN-~-






Appendix E HARDWARE AND SOFTWARE REQUIREMENTS Process Planning

The process planning system operates on Symbolics 3600 series
computers running the 6.1 version of the operating system. It is
written in Zetalisp, and uses Symbolics Flavors. Future work will
upgrade the entire system to run under Genera 7 on the Symbolics
machines. To operate effectively, the host computer should have at
least 4 Mbytes of memory running under Release 6.1, or 8 Mbytes
running under Genera 7.
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